PANDIT DEENDAYAL UPADHYAYA ADARSHA MAHAVIDYALAYA, AMJONGA

Amjonga, Goalpara, Assam-783124 Ph: 9435849434, 9101187756 Email: <u>modelcollegeamjonga@gmail.com</u> Website: www.pduamamjonga.ac.in

FIRST CYCLE NAAC ACCREDITATION 2024

CRITERION II

(TEACHING-LEARNING AND EVALUATION) Key Indicator - 2.6

Student Performance and Learning Outcome

Submitted to

THE NATIONAL ASSESSMENT AND ACCREDITATION COUNCIL

Bangalore, Karnataka, India

2.6. Student Performance and Learning Outcome

Metric No.	Heading
2.6.1	Programme Outcomes (POs) and Course Outcomes (COs) for all programmes
	offered by the institute are stated and displayed on website and attainment of
	POs and COs are evaluated

PROGRAM OUTCOMES (POs)

Bachelor of Science (B.Sc.)

After completing B.Sc. the students are expected to acquire:

- The knowledge with facts and figures related to various subjects in pure sciences. Understand the underlying ideas, guiding principles, and scientific theories pertaining to a variety of scientific phenomena and how they apply to daily life.
- Become proficient in using scientific equipment and organizing and carrying out laboratory investigations. The capacity for making observations and deriving conclusions from scientific experiments.
- Capacity to critically and methodically evaluate the provided scientific evidence, and has the ability to arrive at impartial conclusions.
- Possess the capacity for original thought to suggest new ideas.
- Recognize the value of interdisciplinary approaches in generating fresh perspectives and improved solutions for sustainable development. Develop a scientific outlook on life in all its facets, not just with regard to science disciplines. A highly cultured and civilized personality is the result of ingesting ethical, moral, and social ideals in one's personal and social life.

1. B.Sc. in Botany (CBCS)

Department of Botany of PDUAM, Amjonga follows the syllabus of Gauhati University. This syllabus contains papers for honors and generic programmes. The honors paper on the other hand are divided into core paper, discipline specific paper and skill enhancement paper and are distributed in all the six semesters. The programmes specific outcome of department of Botany prescribed by Gauhati University are as follows:

- Critically evaluation of ideas and arguments by collection relevant information about the plants, so as recognize the position of plant in the broad classification and phylogenetic level.
- Acquire depth and breadth of knowledge/expertise in the field of Plant Identification.
- Interpretation of collected information and use taxonomical information to evaluate and formulate a position of plant in taxonomy.
- Students will be able to collect data, formulate and analyze the collecting data but applying scientific methods.
- Students will be able to present scientific hypotheses and data both orally and in writing in the formats.
- Students will be able to access the primary literature, identify relevant works for a particular topic, and evaluate the scientific content of these works.
- Students will be able to use physical principles (physics, chemistry) for biochemical analysis and also analyze data by using statistical and mathematical formulas.
- Students will be able to identify the major groups_ plants and be able to classify them within a phylogenetic framework. They will be able to compare and contrast the characteristics of plants, algae, and fungi that differentiate them from each other and from other forms of life.
- Students will be able to use the evidence of comparative biology to explain the theory of evolution for the unity and diversity of life on earth. They will be able to use specific examples to explain how modification has shaped plant morphology, physiology, and life history.
- Students will be able to explain the functions at the level of gene, genome, cell, tissue, flower development of plants. They can also be able to give specific examples of physiological adaptations, reproductions, development and mode of life cycle of different forms of plants.
- Students will be able to explain the ecological interconnections among different life forms on earth by tracing nutrient and energy flow through environment and structure of populations, communities and ecosystems.
- Students will be able to explain the experimental techniques and methods of analysis for their area of specialization within biology.

COURSE OUTCOME

Course structure

Scheme for Choice Based Credit System in B. Sc. Botany Honours

Seme	ster	CORE COURSE(14)	Ability Enhancement Compulsory Course(AEC)(2)	Skill Enhancement Course (SEC) (2)	Discipline Specific Elective (DSE) (4)	Generic Elective: (GE) (4)
I	Core Course I Core Course II	Phycology and Microbiology Biomolecules and Cell Biology	English Communication			GE-1
п	Core Course III Core Course IV	Mycology and Phytopathology Archegoniate	Environmental Studies			GE-2
ш	Core Course V Core Course VI Core Course VII	Morphology and Anatomy of Angiosperm Economic Botany Genetics		SEC -1		GE-3
IV	Core Course VIII Core Course IX Core Course X	Molecular Biology Plant Ecology and Phytogeography Plant Systematics		SEC -2		GE-4
v	Core Course XI Core Course XII	Reproductive Biology of Angiosperms Plant Physiology			DSE-1 DSE-2	
VI	Core Course XIII Core Course XIV	Plant Metabolism Plant Biotechnology			DSE -3 DSE-4	

	BOT-HC-4016	Molecular Biology	4
	BOT-HC-4016 (Practical)	Molecular Biology- Practical	2
	BOT-HC-4026	Plant Ecology and Phytogeography	4
	BOT-HC-4026 (Practical)	Plant Ecology and Phytogeography	2
		- Practical	
IV	BOT-HC-4036	Plant Systematics	4
	BOT-HC-4036 (Practical)	Plant Systematics Practical	2
		SEC-II (any one)	4
	1. BOT-SE-4014	1. Nursery and Gardening	
	2. BOT-SE-4024	2. Floriculture	
	3. BOT-SE-4034	3. Intellectual Property Rights	
	BOT-HC-5016	Reproductive Biology of	4
		Angiosperms	
	BOT-HC-5016 (Practical)	Reproductive Biology of	2
		Angiosperm – Practical	
	BOT-HC-5026	Plant Physiology	4
	BOT-HC-5026 (Practical)	Plant Physiology- Practical	2
		DSE-1	4
	BOT-HE-5016	Natural Resource Management	
	DOT IT OIL (Deschart)	DSE-I Practical	2
v	BOI-HE-SUIG (Practical)	Natural Resource Management -	
		Practical	
		DSE-2	4
		Horticultural Practices and Post-	
	BOT-HE-5026	Harvest Technology	
		DSE-2 Practical	2
	BOT-HE-5026	Horticultural Practices and Post-	
	(Practical)	Harvest Technology-Practical	

Course Structure for CBCS in B. Sc. Botany Hounours as per requirement of UGC

SEMESTER	COURSE OPTED	COURSE NAME	Credits
	ENG-AE-1014	English communications	4
	BOT-HC-1016	Phycology and Microbiology	4
1	BOT-HC-1016 (Practical)	Phycology and Microbiology	2
	BOT-HC-1026	Biomolecules and Cell Biology	4
	BOT-HC-1026 (Practical)	Biomolecules and Cell Biology-	2
		Practical	
	ENV-AE-2014	Environmental Studies	4
_	B01-RC-2010	Mycology and Phylopathology	-
Π	BOT-HC-2016 (Practical)	Mycology and Phytopathology-	2
		Practical	
	BOT-HC-2026	Archegoniate	4
	BOT-HC-2026 (Practical)	Archegoniate- Practical	2
	BOT-HC-3016	Morphology Anatomy and of	4
		Angiosperm	
	BOT-HC-3016 (Practical)	Morphology Anatomy and of	2
		Angiosperm –Practical	
	BOT-HC-3026	Economic Botany	4
	BOT-HC-3026 (Practical)	Economic Botany-Practical	2
	BOT-HC-3036	Genetics	4
ш	BOT-HC-3036 (Practical)	Genetics- Practical	2
		SEC-1 (any one)	4
	1. BOT-SE-3014	1. Biofertilizers	
	2. BOT-SE-3024	2. Herbal Technology	
		<u> </u>	
	BOT-HC-6016	Plant Metabolism	
	BOT-HC-6016 (Practical)	Plant Metabolism- Practical	
	BOT-HC-6026	Plant Biotechnology	
	BOT-HC-6026 (Practical)	Plant Biotechnology- Practical	
		DSE-3	
		Industrial and Environmental	

Dor no orre (rindual)			-		
BOT-HC-6026	Plant Biotechnology		4		
BOT-HC-6026 (Practical)	Plant Biotechnology- Practical		2		
BOT-HE-6016	DSE-3 Industrial and Environmental Microbiology		4		
BOT-HE-6016 (Practical)	DSE-3 Industrial and Environmental Microbiology-Practical		2		
Discipline Centric Elective-4	Either 1 or 2 below				
(Theory & practical /					
Project Work)					
1.BOT-HE-6026	DSE-4 1.Analytical Techniques in Plant Sciences	4			
1.BOT-HE-6026 (Practical)	DSE-4 1.Analytical Techniques in Plant Sciences-Practical	2	6		
2.BOT-HE-6036	DSE-4 2. Project Work/ Dissertation	6			
Total Credits in B. Sc. Botany Honours: 116					

VI

Honors papers in Botany:

Semester	Paper title	Paper code	Course outcome
	Phycology and Microbiology	BOT-HC- 1016	CO1. Detailed knowledge on microbes, viruses and bacteria, and their importance in agriculture and medicine CO2. Knowledge on Algal classification, Economic and ecological importance of Algae CO3. Practical knowledge on structure of T-Phage and TMV, lytic and lysogenic life cycle CO4. Practical knowledge on microscopy of bacteria and algae
Semeseter-I	Biomolecules and Cell Biology	BOT-HC- 1026	CO1. Knowledge on structure, classification and physicochemical properties of biomolecules and enzymes CO2. Detailed knowledge on structure, properties and functions of cell and its components CO3. Practical knowledge on properties of cell and cell membrane, DNA staining techniques and microscopy of plant cell CO4. Knowledge on qualitative tests of biomolecules

Semester	Paper title	Paper code	Course outcome
Semester-II	Mycology and Phytopathology	BOT-HC- 2016	CO1. Detailed knowledge on different classes of fungi, their structure, classification, life cycle and reproduction CO2. Knowledge on diseases in plants caused by viruses, bacteria and fungi and biotechnological applications of fungi CO3. Structural analysis of different classes of fungi and their reproductive stages CO4. Knowledge on structures of symbiotic associations (Lichens, Mycorrhiza)
	Archegoniate	BOT-HC- 2026	CO1. Detailed knowledge on morphology, anatomy, classification and properties of bryophytes, pteridophytes and gymnosperms
			CO2. Knowledge on reproduction and

			economic importance and ecological significance of bryophytes, pteridophytes and gymnosperms CO3. Practical knowledge on morphology and reproductive structures of archegoniates CO4. Spore morphology analysis and detailed knowledge on male and female reproductive structures in gymnosperms
Semester-III	Morphology and Anatomy of Angiosperms	BOT-HC- 3016	CO1. Knowledge on morphology of angiosperms and developmental biology of plant body CO2. Knowledge on structural and anatomical organization of tissue system in plants and their classification CO3. Practical knowledge on inflorescences and fruits of angiosperms CO4. Practical knowledge on anatomical features of plant body parts

Semester	Paper title	Paper code	Course outcome
Semester-III	Economic Botany	ВОТ-НС- 3026	CO1. Knowledge on Mendelian concepts in genetics; structure, functions and properties of chromosome; chromosomal aberration CO2. Knowledge on gene structures and gene mutations, population genetics CO3. Practical knowledge on chromosomal mapping and gene interaction studies CO4. Practical visualization of chromosomal anomalies
Semester-III (Skill Enhancement Courses)	Biofertilizers	BOT-SE- 3014	CO1. Basic knowledge on the microbes used as biofertilizer and understand the process of their isolation, identification, mass multiplication, carrier based inoculants and knowledge on Actinorrhizal symbiosis CO2. Concept on the general characteristics, isolation, mass multiplication carrier based inoculants of <i>Azospirillum</i> and <i>Azotobacter</i> also the knowledge on the crop response to <i>Azotobacter</i> CO3. Basic knowledge on Cyanobacteria including factors affecting growth of Cyanobacteria, concept on the nitrogen fixation and use of blue green algae in rice cultivation CO4. Brief knowledge on the Mycorrhizal association and understand the details of various types, taxonomy, occurrence, distribution and growth parameters of Mycorrhiza CO5. Details about the organic farming, maintenance and recycling of biodegradable waste material and understand the methods of making biocompost and vermicompost with application

Semester	Paper title	Paper code	Course outcome
Semester-III (Skill Enhancement Courses	Herbal Technology	BOT-SE- 3024	CO1. Concept on the plants used as traditional medicine, and understanding the process of cultivation, harvesting, processing, storage, marketing and utilization of medicinal plants CO2. Brief knowledge on medicinal drugs obtained from plants and comprehensive idea about systematic position, medicinal uses of Tulsi, Ginger, Fenu greek, Indian goose berry and Ashoka CO3. Concept on the phytochemistry of medicinal herbs and identification, utilization of medicinal plants CO4. Basic knowledge on quality control, owing the medicinal properties of herbal drugs including the secondary metabolites and concept of drug adulteration, types, methods of drug evaluation CO5. Understand the process of micro propagation of important medicinal plant species
Semester-IV	Molecular Biology	ВОТ-НС- 4016	CO1. Detailed knowledge on architecture of nucleic acids, organization of DNA in organisms, models of replication and the factors associated with it CO2. Detailed knowledge on transcriptional and post transcriptional events in a cell, translation of proteins CO3. Practical acquaintance of isolation and quantification of DNA from plants CO4. Knowledge on photographic study of RNA polymerases and RNA modification machinery

Semester	Paper title	Paper code	Course outcome
Semester-IV	Plant Ecology and Phytogeography	BOT-HC- 4026	CO1. Knowledge on origin, formation and properties of abiotic components of the ecosystem, interactions and adaptation of plants with biotic and abiotic factors CO2. Knowledge on properties of communities in a population and trophical and habitat organization in an ecosystem CO3. Practical knowledge on property analysis of abiotic components of the ecosystem CO4. Practical knowledge on vegetation study and different ecological sites
	Plant Systematics	ВОТ-НС- 4036	CO1. Knowledge on plant identification and classification systems, plant nomenclature CO2. Knowledge on phylogenetic and evolutionary relationships of angiosperms CO3. Practical knowledge on foliar morphology and taxonomical study of angiosperms
Semester-IV (Discipline specific courses)	Nursery and Gardening	BOT-SE- 4014	CO1. Brief idea about objectives, scope, infrastructure and maintenance of Nursery CO2. Concept on structure, types and dormancy of seeds and brief idea about seed storage including types and process and knowledge on seed production technology CO3. Knowledge on various modes of vegetative propagation and maintenance of plants in green house CO4. Brief idea about development and maintenance of gardening including scope and types and understand the various gardening operations including management of pests and diseases CO5. Detail knowledge on managements of seeds and seedlings and concept about cultivation, storage and marketing of important vegetables

Semester	Paper title	Paper code	Course outcome
Semester-IV (Discipline specific courses)	Floriculture	BOT-SE- 4024	CO1. Basic knowledge including history, importance and scope of floriculture CO2. Brief idea about Nursery management and garden operations and knowledge on the terms related to gardening and concept about role of plant growth regulators CO3. Covers the knowledge of various ornamental plants and concept of cultivations of plants in pots and knowledge about Bonsai CO4. Idea about various garden designs and features of such gardens and knowledge about some famous gardens of India CO5. Knowledge about the process of making garden more attractive
	Intellectual Property Rights	BOT-SE- 4034	 CO1. Knowledge on IPR, their type and infringement CO2. Understanding about traditional knowledge and their protection, bio-prospecting and bio piracy. CO3. Knowledge on protection on plant varieties, farmer rights CO4. Knowledge on Information technology related IPR; data database, chips and domain name protection CO5. Knowledge on novelty, bio based patenting, and moral issue associated with biotechnological inventions

Semester	Paper title	Paper code	Course outcome
Semester-V	Reproductive Biology of Angiosperms	BOT-HC- 5016	CO1. Knowledge on detailed morphological and anatomical study of reproductive structures of angiospermic plants CO2. Knowledge on embryology and embryological abnormalities in angiosperms CO3. Structural documentation of reproductive structures of angiosperms CO4. Practical knowledge on developmental biology of embryo and endosperms
(Core paper)	Plant Physiology	nt Physiology BOT-HC- 5026	CO1. Knowledge on mechanisms of water, minerals and nutrient absorption of plants CO2. Knowledge on roles of plant hormones and mechanism of flowering in plants CO3. Practical knowledge on effects of growth regulators on plant parts CO4. Practical knowledge on determination of osmotic and water potential
Semester-V (Discipline Specific Elective)	Natural Resource Management	BOT-HE- 5016	 CO1. Comprehensive knowledge or different types of natural resources and their ecological, economical and socio-cultural values CO2. Basic understandings of land water and forest resources CO3. Overall knowledge on resourced degradation, their judicious use and management for sustainability CO4. Knowledge on biodiversity - its importance, management and Bioprospecting CO5. Knowledge on IPR, and global arena on resource management conservation and benefit sharing

Semester	Paper title	Paper code	Course outcome
	Natural Resource Management	BOT-HE- 5016	CO6. Hands on experience on the domestic solid waste estimation and determining its impact on land degradation CO7. Hands on experience on forest study using tools like GPS/GIS, and understanding of ecological importance of forest resources
Semester-V (Discipline Specific Elective)	Horticultural Practices and Post-Harvest Technology	Il Practices Harvest ology BOT-HE- 5026	CO1. Basic understandings or Horticultural science and its importance in employment generation and socio-economic development CO2. Classification of horticultural crops, identification of potential horticultural crops – their cultivation production, management and commercialization CO3. Knowledge on horticultural techniques, landscaping and gardening CO4. Overall knowledge on post- harvest technology, disease management, and germplasm management for horticulture CO5. Field knowledge of gardening nurseries, standing crops of horticultural importance
Semester-VI (Core papers)	Plant Metabolism	BOT-HC- 6016	CO1. Detailed knowledge of metabolic events of photosynthesis and nutrien metabolism CO2. Knowledge of signalling molecules and pathways in the plan cell CO3. Practical knowledge on differen types of chromatographic techniques CO4. Estimation of TAN, sugar and protein contents in plant sample
	Plant Biotechnology	BOT-HC- 6026	CO1. Knowledge on applications o tissue culture techniques, construction of recombinant DNA and transformation into hosts, construction of DNA libraries CO2. Knowledge on development o transgenic plants for agricultural o industrial use

Semester	Paper title	Paper code	Course outcome
Semester-VI (Core paper)	Plant Biotechnology	BOT-HC- 6026	CO4. Preparation of media for tissue culture techniques and photographic study of plant tissue culture CO5. Photographic study of generating transgenic plants for agriculture
Semester-VI (Discipline Specific Elective)	Industrial and Environmental Microbiology	BOT-HE- 6016	CO1. Understanding the roles of microbes in industries and environment CO2. Basic knowledge of different kinds of bioreactors and fermentation processes CO3. Knowledge on production processes of some microbial products in industries through site visits CO4. Knowledge on application of enzymes in industries CO5. Diversity and distribution of microbes in air, water and soil CO6. Basic understandings on water microbiology and water analysis methods CO7. Usefulness of microbes in agriculture and bioremediation of contaminated
	Analytical Techniques in Plant Sciences	BOT-HE- 6026	CO1. Knowledge on microscopy and imaging in plant science CO2. Principles and application of centrifuge, spectroscopy and chromatography in biology CO3. Basic knowledge on biostatistics including measures of central tendency and dispersions, statistical data analysis and representations CO4. Practical knowledge on microscopy, chromatography, centrifugation and spectroscopy
	Project Work/Dissertation	BOT-HE- 6036	CO1. Practical knowledge on addressing relevant scientific questions through experimentation

Semester	Paper title	Paper code	Course outcome
Semester-I	Biodiversity (Microbes, Algae, Fungi and Archegoniate)	BOT-HG- 1016	CO1. Knowledge on structure and reproduction of viruses and bacteria and their economic importance CO2. Describe general characteristics morphological diversity, thallu organization, life cycles, ecologica and economic importance of algae CO3. Describe general characteristics morphological diversity, thallu organization, life cycles, ecologica and economic importance of fungi CO4. General characteristics classification, morphological diversity and evolutionary significance o bryophytes CO5. General characteristics and classification of pteridophytes evolution of stele, heterospory and seed habit in pteridophytes CO6. Classify gymnosperms, and describe their general characteristic and economic importance CO7. Practical knowledge on staining and slide preparation to study bacteria algae and fungi under the microscope CO8. Practical knowledge on vegetative and reproductive structure of some representative bryophytes pteridophytes and gymnosperms
Semester-II	Plant Ecology and Taxonomy	BOT-HG- 2016	CO1. Understanding soil, water, ligh and temperature as ecological factors CO2. Knowledge on adaptiv characters of hydrophytes an xerophytes CO3. Knowledge on plant communit types and their succession CO4. Knowledge on ecosystem trophic levels and energy flow i ecosystems CO5. Knowledge on biogeochemica cycling with an emphasis on carbon nitrogen and phosphorus cycles CO6. General idea on phytogeograph and endemism

Semester	Paper title	Paper code	Course outcome
Semester			CO7. Knowledge on plant taxonomy, principles, ICN rules, ranks and hierarchy
			CO8. Knowledge on different systems of plant classification and cluster analysis
			CO9. Practical knowledge on soit temperature measurement, humidity measurement, rainfall estimation and light intensity measurement
Semester-II	Plant Ecology and Taxonomy	BOT-HG- 2016	CO10. Adaptive morphological characterization of hydrophytes and xerophytes
			CO11. Quadrate size determination for herbaceous plant studies in ecology
		2010 xerophytes CO11. Quadrate size determination herbaceous plant studies in ecolog CO12. Estimation of freque distribution of herbaceous plants u quadrate method CO13. Practical knowledge on identification upto the family level belongs to Brassicaceae, Solana and Lamiaceae; Preparation herbarium specimens	CO12. Estimation of frequency distribution of herbaceous plants using quadrate method
		CO13. Practical knowledge on plan identification upto the family level that belongs to Brassicaceae, Solanaceae and Lamiaceae; Preparation of herbarium specimens	
			CO1. Understanding the roles of water in plant physiology, transpiration, and guttation
			CO2. Knowing of macro- and micro- nutrients and mineral uptakes in plants
			CO3. Understanding the transportations of minerals and foods in plants
Semester-III	Plant Physiology and Metabolism	BOT-HG- 3016	CO4. Knowledge on photosynthetic pigments, photosynthetic reactions and photorespiration
			CO5. Understanding of respiration processes – glycolysis, TCA and PPF pathways
			CO6. Knowledge on enzyme properties, actions and inhibitions
			CO7. Knowledge on biological nitrogen fixation

Semester	Paper title	Paper code	Course outcome
	Plant Physiology and Metabolism	BOT-HG- 3016	CO8. Knowledge on plant hormones, and plant responses to light and temperature CO9. Determine osmotic potentials of plant cells and effect of light on transpiration CO10. Calculate stomatal index and frequency CO11. Demonstrate the effect of pH and concentrations in catalase activity CO12. Demonstrate the effect of bicarbonate concentration on O2 evolution in photosynthesis
Semester-III	Environmental Biotechnology	BOT-HG- 3026	CO1. Knowledge on environment and the cause of environmental pollutions CO2. Knowledge on the methods of pollution measurement and bioremediation CO3. Knowledge on waste water treatment processes CO4. Knowledge on xenobiotics – their types and bioremediation CO5. Knowledge on application of immobilized cells/enzymes in industries CO6. Knowledge on national legislations and international treaties for environmental protection and pollution management CO7. Practical knowledge on determining basic properties of soil and water like DO, salinity, pH, total hardness, etc CO8. Practical knowledge on gravimetric analysis of effluents CO9. Practical knowledge on the assessment of microorganisms in air and water samples

Semester	Paper title	Paper code	Course outcome
			CO1. Knowledge on different types of tissues and their organizations in plants
			CO2. Knowledge on secondary growth and anomalous structures in plants
			CO3. Knowledge on adaptive and protective characters of plants
	Plant Anatomy and Embryology	BOT-HG- 4016	CO4. Understanding the reproductive units of a flower; ovule types, ovary types, pollination and fertilization mechanisms; embryo and endosperm developments and functions
Semester-IV			CO5. Hands on experiences on slide preparation for anatomical studies of leaf, stem and root
			CO6. Flower dissection and study of flower reproductive parts and events
	Economic Botany and Plant Biotechnology	BOT-HG- 4026	CO1. Understanding the concept of 'centre of origin of crop plants' and their distribution with a special emphasis on wheat CO2. Overall knowledge on economically important crops with their botanical characters and parts used
			CO3. Knowledge on plant tissue culture and the basic molecular techniques used in biotechnology CO4. Basic concept of bioinformatics and its application

2. B.Sc. in Chemistry (CBCS)

Programme specific outcome

Being an affiliated institution, PDUAM Amjonga must implement the program-specific curriculum created by the parent university because it is an affiliated institution. The curriculum and syllabi established by Gauhati University do not explicitly indicate the program-specific outcomes. However, we took the help of UGC document on "learning outcome-based curriculum framework in Chemistry" to conceptualize the learning outcomes of an undergraduate program in chemistry by. The following skills can be attained by a student who earns a B.Sc. (Honors) in chemistry from our college:

Core competency: Students will acquire core competency in the subject Chemistry, and in allied subject areas.

(i) Systematic and coherent understanding of the fundamental concepts in Physical chemistry, Organic Chemistry, Inorganic Chemistry, Analytical Chemistry and all other related allied chemistry subjects.

(ii) Students will be able to use the evidence based comparative chemistry approach to explain the chemical synthesis and analysis.

(iii) The students will be able to understand the characterization of materials.

(iv) Students will be able to understand the basic principle of equipment, instruments used in the chemistry laboratory.

(v) Students will be able to demonstrate the experimental techniques and methods of their area of specialization in Chemistry.

(vi) Disciplinary knowledge and skill: A graduate student is expected to be capable of demonstrating comprehensive knowledge and understanding of both theoretical and experimental/applied chemistry knowledge in various fields of interest like Analytical Chemistry, Physical Chemistry, Inorganic Chemistry, Organic Chemistry, Material Chemistry, etc. Further, the student will be capable of using of advanced instruments and related soft-wares for in-depth characterization of materials/chemical analysis and separation technology.

(vii) Skilled communicator: The course curriculum incorporates basics and advanced training in order to make a graduate student capable of expressing the subject through technical writing as well as through oral presentation.

(viii) Critical thinker and problem solver: The course curriculum also includes components that can be helpful to graduate students to develop critical thinking ability by way of solving problems/numerical using basic chemistry knowledge and concepts.

(ix) Sense of inquiry: It is expected that the course curriculum will develop an inquisitive characteristics among the students through appropriate questions, planning and reporting experimental investigation.

(x) Team player: The course curriculum has been designed to provide opportunity to act as team player by contributing in laboratory, field based situation and industry.

(xi) Skilled project manager: The course curriculum has been designed in such a manner as to enabling a graduate student to become a skilled project manager by acquiring knowledge about chemistry project management, writing, planning, study of ethical standards and rules and regulations pertaining to scientific project operation.

(xii) Digitally literate: The course curriculum has been so designed to impart a good working knowledge in understanding and carrying out data analysis, use of library search tools, and use of chemical simulation software and related computational work.

(xiii) Ethical awareness/reasoning: A graduate student requires to understand and develop ethical awareness/reasoning which the course curriculum adequately provide.

(xiv) Lifelong learner: The course curriculum is designed to inculcate a habit of learning continuously through use of advanced ICT technique and other available techniques/books/journals for personal academic growth as well as for increasing employability opportunity.

Course structure:

Honours (Chen	nistry)		
SEMESTER	COURSE CODE	COURSE NAME	Credits
I	ENG-AE-1014	English	4
		Communications	
	CHE-HC-1016	Inorganic Chemistry-I	4+2=6
		Inorganic Chemistry-I	
		Lab	
	CHE-HC-1026	Physical Chemistry-I	4+2=6
		Physical Chemistry-1	
	AAA HC INNS	CEL	4+2/5+1=6
	AAA-HG-1110"	GE-1 Constit Florting 1	4+2/5+1-0
		Practical/Tutorial	
	Total Credits in	Semester I	22
п	Ability Enhancement	Environmental Studies	4
	Compulsory		
	Course-II**		
	CHE-HC-2016	Organic Chemistry-I	4+2=6
		Organic Chemistry-I	
		Lab	1.2.4
	CHE-HC-2020	Physical Chemistry-II	4+2=0
		Physical Chemistry-11	
	AAA HC WY65	CE 2	4+2/5+1=6
	AAA-HG-2110	Generic Flective 2	4+2/3+1=0
		Practical/Tutorial	
	Total Credits in Semes	ter II	22
ш	CHE-HC-3016	Inorganic Chemistry-II	4+2=6
		Inorganic Chemistry-II	
		Lab	
	CHE-HC-3026	Organic Chemistry-II	4+2=6
		Organic Chemistry-II	
		Lab	
	CHE-HC-3036	Physical Chemistry-III	4+2=0
		Physical Chemistry-III	
	CHE CE WYA	LaD SEC 1	4
	AAA-HG-3YY6*	GE-3	4+2/5+1=6
		Generic Elective -3	
		Practical/Tutorial	
	Total Credits in Sem	ester III	28
IV	CHE-HC-4016	Inorganic Chemistry-III	4+2=6
		Inorganic Chemistry-III	
		Lab	
	CHE-HC-4026	Organic Chemistry-III	4+2=6
		Organic Chemistry-III	
	CITE HC 1936	Lab Dispute Chamistry TV	412-6
	CHE-HC-4030	Physical Chemistry-IV	4+2=0
		Lab	
	CHE-SE-4VV4+	SEC-2	4
	AAA-HG-4YY6*	GE-4	4+2/5+1=6
		Generic Elective -4	
		Practical	
	Total Credits in Se	mester IV	28
V	CHE-HC-5016	Organic Chemistry-IV	4+2=6

		Organic Chemistry-IV Lab	
	CHE-HC-5026	Physical Chemistry-V	4+2=6
		Physical Chemistry-V	
		Lab	
	CHE-HE-5YY6‡	DSE-1	4+2=6
		DSE-1 Lab	
	CHE-HE-5YY6‡	DSE-2	4+2=6
		DSE-2 Lab	
	Total Credits in Ser	mester V	24
VI	CHE-HC-6016	Inorganic Chemistry-IV	4+2=6
		Inorganic Chemistry-IV	
		Lab	
	CHE-HC-6026	Organic Chemistry-V	4+2=6
		Organic Chemistry-V	
		Lab	
	CHE-HE-6YY6‡	DSE-3	4+2=6
		DSE-3 Lab	
CH	CHE-HE-6YY6:	DSE-4	4+2=6
		DSE-3 Lab/tutorial	
	Total Credits in Sem	ester VI	24
	148		

SCHEME FOR CHOICE BASED CREDIT SYSTEM IN B. Sc.

Honors papers in Chemistry:

C	De 11 ou 4241	Dens	Common and an an
Semester	Paper title	Paper code	Course outcome
	INORGANIC CHEMISTRY-I	CHE-HC- 1016	would have clear understanding of the concepts related to atomic and molecular structure, chemical bonding, periodic properties and redox behaviour of chemical species. Students will also have hands on experience of standard solution preparation in different concentration units and learn volumetric estimation through acid-base and redox reactions.
Semester-I	PHYSICAL CHEMISTRY I	СНЕ-НС- 1026	In gaseous state unit the students will learn the kinetic theory of gases, ideal gas and real gases. In liquid state unit, the students are expected to learn the qualitative treatment of the structure of liquid along with the physical properties of liquid, viz, vapour pressure, surface tension and viscosity. In the molecular and crystal symmetry unit they will be introduced to the elementary idea of symmetry which will be useful to understand solid state chemistry and group theory in some higher courses. In solid state unit the students will learn the basic solid state chemistry application of x-ray crystallography for the determination of some very simple crystal structures. The students will also learn another important topic "ionic equilibria" in this course.
Semester II	ORGANIC CHEMISTRY I	CHE-HC- 2016	Students will be able to identify different classes of organic compounds, describe their reactivity and explain/analyze their chemical and stereo chemical aspects.
	PHYSICAL CHEMISTRY II	CHE-HC- 2026	In this course the students are expected to learn laws of thermodynamics, thermochemistry, thermodynamic functions, relations between thermodynamic properties, Gibbs Helmholtz equation, Maxwell relations etc. Moreover the students are expected to learn partial molar quantities, chemical equilibrium, solutions and colligative properties.

Semester	Paper title	Paper code	Course outcome
Semester-II			After completion of this course, the students will be able to understand the chemical systems from thermodynamic point of view.
	INORGANIC CHEMISTRY-II	СНЕ-НС- 3016	On successful completion of this course students would be able to apply theoretical principles of redox chemistry in the understanding of metallurgical processes. Students will be able to identify the variety of s and p block compounds and comprehend their preparation, structure, bonding, properties and uses. Experiments in this course will boost their quantitative estimation skills and introduce the students to preparative methods in inorganic chemistry.
Semester III	ORGANIC CHEMISTRY-II	СНЕ-НС- 3026	Students will be able to describe and classify organic compounds in terms of their functional groups and reactivity.
	PHYSICAL CHEMISTRY- III	СНЕ-НС- 3036	The students are expected to learn phase rule and its application in some specific systems. They will also learn rate laws of chemical transformation, experimental methods of rate law determination, steady state approximation etc. in chemical kinetics unit. After attending this course the students will be able to understand different types of surface adsorption processes and basics of catalysis including enzyme catalysis, acid base catalysis and particle size effect on catalysis.
Semester IV	INORGANIC CHEMISTRY-III	СНЕ-НС- 4016	On successful completion, students will be able name coordination compounds according to IUPAC, explain bonding in this class of compounds, understand their various properties in terms of CFSE and predict reactivity. Students will be able to appreciate the general trends in the properties of transition elements in the periodic table and identify differences among the rows.

Through the experiments students not

a t		D -	
Semester	Paper title	Paper code	Course outcomeCourse learning outcomes focus on
Semester-III (Skill Enhancement Courses)	IT SKILLS FOR CHEMISTS	CHE-SE- 3024	skill development related to basic computer operations and information technology. After completing the course the incumbent is able to use the computer for basic purposes of preparing his personnel/business letters, viewing information on Internet (the web), sending mails, using internet banking services etc. After opting this course the students are expected to accumulate the skills in writing activities and Handling numeric data.
	BASIC ANALYTICAL CHEMISTRY	CHE-SE- 3034	Upon completion of this course, students shall be able to explain the basic principles of chemical analysis, design/implement microscale and semi micro experiments, record, interpret and analyze data following scientific methodology.
	CHEMICAL TECHNOLOGY & SOCIETY	CHE-SE- 3044	Students shall be familiarized with processes and terminologies in chemical industry, like mass balance, energy balance etc. Learners will be able to use chemical and scientific literacy as a means to better understand the topics related to the society.
	CHEMOINFORMATICS	CHE-SE- 3054	On the successful completion of the course, the students should be able to explain, interpret and critically examine the utility of computers and software tools to solving chemistry related problems. Recognize, apply, compare and predict chemical structures, properties, and reactivity and; solve chemistry related problems. Employ critical thinking and scientific reasoning to design and safely implement laboratory experiments and keep the records of the same. Compile, interpret and analyze the qualitative/quantitative data and communicate the same in a scientific

			literature
Semester	Paper title	Paper code	Course outcome
Semester-III (Skill Enhancement Courses)	BUSINESS SKILLS FOR CHEMISTS	CHE-SE- 3064	students shall be able to explain and/or analyze the important steps of business operations, finance and intellectual property as applied to chemical industry.
	INTELLECTUAL PROPERTY RIGHTS (IPR)	CHE-SE- 3074	After completing this course, students will have in-depth understanding about the importance and types of IPR. This course will also provide the clarity on the legal and economic aspects of the IP system.
Semester IV (Core paper)	INORGANIC CHEMISTRY-III	СНЕ-НС- 4016	On successful completion, students will be able name coordination compounds according to IUPAC, explain bonding in this class of compounds, understand their various properties in terms of CFSE and predict reactivity. Students will be able to appreciate the general trends in the properties of transition elements in the periodic table and identify differences among the rows. Through the experiments students not only will be able to prepare, estimate or separate metal complexes/compounds but also will be able to design experiments independently which they should be able to apply if and when required
	ORGANIC CHEMISTRY- III	СНЕ-НС- 4026	Students shall demonstrate the ability to identify and classify different types of N-based derivatives, alkaloids and hetrocyclic compounds/explain their structure mechanism and reactivity/critically examine their synthesis and reactions mechanism.
	PHYSICAL CHEMISTRY- IV	СНЕ-НС- 4036	In this course the students will learn theories of conductance and electrochemistry. Students will also understand some very important topics such as solubility and solubility products, ionic products of water, conductometric titrations etc.

Semester	Paper title	Paper code	Course outcome	
			The students are also expected to understand the various parts of electrochemical cells along with Faraday's Laws of electrolysis. The students will also gain basic theoretical idea of electrical & magnetic properties of atoms and molecules.	
	ANALYTICAL CLINICAL BIOCHEMISTRY	CHE-SE- 4014	Students will be able to identify various molecules relevant to a particular pathological condition and their estimation protocols.	
Semester-IV (Skill Enhancement Courses)	GREEN METHODS IN CHEMISTRY	CHE-SE- 4024	Students shall be able to describe an evaluate chemical products an processes from environmenta perspective, define and propos sustainable solutions and criticall assess the methods for waste reductio and recycling.	
	PHARMACEUTICAL CHEMISTRY	CHE-SE- 4034	Students will be able to appreciate the drug development process, identify various small molecules used for treatments different ailments and other physiological processes.	
	CHEMISTRY OF COSMETICS & PERFUMES	CHE-SE- 4044	Students will learn about the preparation and chemistry involved with the production different cosmetic. This may encourage students to take up entry level jobs at cosmetics industry or venture into commercial production of cosmetics as an entrepreneur.	
	PESTICIDE CHEMISTRY	CHE-SE- 4054	Students will be able to explain or describe and critically examine different types of pesticides, their activity/toxicity and their applications and the need for the search of an alternative based on natural products.	

Semester	Paper title	Paper code	Course outcome
	FUEL CHEMISTRY	CHE-SE- 4064	At the end of this course students will learn about the classes of renewable and non-renewable energy sources. Students will learn about the composition of coal and crude petroleum, their classification, isolation of coal and petroleum products and their usage in various industries. They will also learn to determine industrially significant physical parameters for fuels and lubricants.
	ORGANIC CHEMISTRY- IV	CHE-HC- 5016 Students will be able explain/describe the important feature of nucleic acids, amino acids enzymes and develop their ability examine their properties applications.	
Semester V	PHYSICAL CHEMISTRY V	СНЕ-НС- 5026	After completion of this course the students are expected to understand the application of quantum mechanics in some simple chemical systems such as hydrogen atom or hydrogen like ions. The students will also learn chemical bonding in some simple molecular systems. They will able to understand the basics of various kinds of spectroscopic techniques and photochemistry

Semester	Paper title	Paper code	Course outcome	
	APPLICATIONS OF COMPUTERS IN CHEMISTRY	СНЕ-НЕ- 5016	After the completion of this course it will help the student to interpret laboratory data, curve fitting of experimental work, also perform quantum mechanical calculations for various molecular models.	
	ANALYTICAL METHODS IN CHEMISTRY	CHE-HE- 5026	On successful completion students v be have theoretical understandi- about choice of various analyti- techniques used for qualitative a quantitative characterization samples. At the same time through experiments students will gain har on experience of the discuss techniques. This will enable stude to take judicious decisions wh analyzing different samples.	
Semester V (Discipline Specific Electives)	MOLECULAR MODELLING & DRUG DESIGN	CHE-HE- 5036	Students will be able to identify basic components of computer and programming as applied to computer assisted design and modelling of molecules.	
	NOVEL INORGANIC SOLIDS	CHE-HE- 5046	After the completion of this course it will also be possible for the students to opt for studying an interdisciplinary master's programme with an emphasis on the synthesis and applications of various materials or take up a job in the materials production and/or processing industry.	
	POLYMER CHEMISTRY	CHE-HE- 5056	After completion of this course the students will learn the definition and classifications of polymers, kinetics of polymerization, molecular weight of polymers, glass transition temperature, and polymer solutions etc. They also learn the brief introduction of preparation, structure and properties of some industrially important and technologically promising polymers.	

Semester	Paper title	Paper code	Course outcome
	INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS	СНЕ-НЕ- 5066	Students shall be able to explain the theoretical basis of different analytical techniques, identify the experimental requirements and compare/analyze the data/results thereof.
Semester VI	INORGANIC CHEMISTRY-IV	CHE-HC- 6016	By studying this course the students will be expected to learn about how ligand substitution and redox reactions take place in coordination complexes. Students will also learn about organometallic compounds, comprehend their bonding, stability, reactivity and uses. They will be familiar with the variety of catalysts based on transition metals and their application in industry. On successful completion, students in general will be able to appreciate the use of concepts like solubility product, common ion effect, pH etc. in analysis of ions and how a clever design of reactions, it is possible to identify the components in a mixture. With the experiments related to coordination compound synthesis, calculation of 10Dq, controlling factors etc. will make the students appreciate the concepts of theory in experiments.
	ORGANIC CHEMISTRY-V	СНЕ-НС- 6026	Students will be able to explain/describe basic principles of different spectroscopic techniques and their importance in chemical/organic analysis. Students shall be able to classify/identify/critically examine carbohydrates, polymers and dye

Semester	Paper title	Paper code	Course outcome
Semester VI (Discipline specific course)	GREEN CHEMISTRY	CHE-HE- 6016	Apart from introducing learners to the principles of green chemistry, this course will make them conversant with applications of green chemistry to organic synthesis. Students will be prepared for taking up entry level jobs in the chemical industry. They also will have the option of studying further in the area.
	INDUSTRIAL CHEMICALS AND ENVIRONMENT	CHE-HE- 6026	After successful completion of the course, students would have learnt about the manufacture, applications and safe ways of storage and handling gaseous and inorganic industrial chemicals. Students will get to know about industrial metallurgy and the energy generation industry. Students will also learn about environmental pollution by various gaseous, liquid wastes and nuclear wastes and their effects on living beings. Finally, the students will learn about industrial waste management, their safe disposal and the importance of environmental friendly "green chemistry" in chemical industry.
	INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE	CHE-HE- 6036	This course will establish the basic foundation of industrial inorganic chemistry among the students. This will be helpful for pursuing further studies of industrial chemistry in future. Experiments will help the Students to gather the experience of qualitative and quantitative chemical analysis. Students will be capable of doing analysis of the inorganic materials which are used in our daily life. They will have insight of the industrial processes.
	RESEARCH METHODOLOGY FOR CHEMISTRY	CHE-HE- 6046	After completing this course, students should be able to construct a rational research proposal to generate fruitful output in terms of publications and patents in the field of chemical sciences.
	DISSERTATION	CHE-HE- 6056	After doing this project student will get an idea about how to design a research methodology and to write scientific articles.

Semester	Paper title	Paper Code	Course Outcome
Semester I	CHEMISTRY1: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS	CHE-RC-1016 CHE-HG-1016	After completion of this course the students will learn the atomic structure through the basic concepts of quantum mechanics. They will understand the chemical bonding through VB and MO approaches. In organic part, the students are expected to learn basic ideas used in organic chemistry, stereochemistry, functional groups, alkanes, alkenes, alkynes etc.
Semester II	CHEMISTRY2: s- AND p-BLOCK ELEMENTS, TRANSITION ELEMENTS, COORDINATIONCHE MISTRY, STATES OF MATTER & CHEMICAL KINETICS	CHE-RC-2016 CHE-HG-2016	After completion of this course the students will learn periodic properties in main group elements, transition metals (3d series). They will also learn the crystal field theory in coordination chemistry unit. In physical chemistry part, the students are expected to learn kinetic theory of gases, ideal gas and real gases, surface tension, viscosity, basic solid-state chemistry and chemical kinetics.
Semester III	CHEMISTRY 3: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY-I	CHE-RC-3016 CHE-HG-3016	After completion of this course the students will able to understand the chemical system from thermodynamic points of view. They will also learn two very important topics in chemistry- chemical equilibrium and ionic equilibrium. In organic chemistry part, the students are expected to learn various classes of organic molecules-alkyl halides, arylhalides, alcohols, phenols, ethers, aldehydes and ketones.

B.Sc. Generic Elective/Regular Core Courses in Chemistry

a			a a b
Semester	Paper Title	Paper Code	Course Outcome
Semester IV	CHEMISTRY4 SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCH EMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY	CHE-RC-4016 CHE-HG-4016	After completion of this course the students learn solutions, phase rule and its application in specific cases, basics of conductance and electrochemistry. Students will also learn some important topics of organic and ochemistry- carboxylic acids, amines, amino acids, peptides, proteins and carbohydrates.
Semester V	ANALYTICAL METHODS IN CHEMISTRY	CHE-RE-5026	On successful completion students will be have theoretical understanding about choice of various analytical techniques used for qualitative and quantitative characterization of samples. At the same time through the experiments students will gain hands on experience of the discussed techniques. This will enable students to take judicious decisions while analyzing different samples.
Semester VI	GREEN CHEMISTRY	CHE-RE-6016	Apart from introducing learners to the principles of green chemistry, this course will make them conversant with applications of green chemistry to organic synthesis. Students will be prepared for taking up entry level jobs in the chemical industry. They also will have the option of studying further in the area.

3. B.Sc. in Computer science

Program Specific outcomes

PDUAM, Amjonga, follows the syllabus of its affiliating university i.e. Gauhati University. Therefore, Department of Computer Science of this college adopts the course curriculum and gives effort to make the students aware of programme specific outcome prescribed by Gauhati University.

Course structure:

SEMESTER WISE PLACEMENT OF THE COURSES						
Semester	CORE COURSE (14)	Ability Enhancement Compulsory Course(AECC) (2)	Skill Enhancement Course (SEC) (2)	Elective: Discipline Specific DSE (4)	Elective: Generic(GE) (4)	
I	CSC-HC-1016 Programming Fundamentals using C/C++	ENG-AE-1014			GE-1	
	Computer System Architecture					
п	CSC-HC-2016 Programming in JAVA CSC-HC-2026 Discrete Structures	ENV-AE-2014			GE-2	
ш	CSC-HC-3016 Data Structures		SEC -1		GE-3	
	CSC-HC-3026 Operating System					
	CSC-HC-3036 Computer Networks					
IV	CSC-HC-4016 Design and Analysis of Algorithms		SEC -2		GE-4	
	CSC-HC-4026 Software Engineering	-				
	CSC-HC-4036 Database Management System					
v	CSC-HC-5016 Internet Technologies			DSE-1		
	CSC-HC-5026 Theory of Computation			DSE -2		
VI	CSC-HC-6016 Artificial Intelligence			DSE -3		
	CSC-HC-6026 Computer Graphics			DSE -4		

CBCS Course Structure for B.Sc. (Honours) Computer Science Program
Program Learning Outcomes

Completion of B.Sc. (Honours) Computer Science Program shall enable a student

i) To communicate technical information both orally and in writing

ii) Apply the knowledge gained in core courses to a broad range of advanced topics in

Computer Science, to learn and develop sophisticated technical products independently.

iii) To design, implement and evaluate computer based system, process, component, or program to meet desired needs by critical understanding, analysis and synthesis.

iv)Identify applications of Computer Science in other fields in the real world to enhance the career prospects

v) Realize the requirement of lifelong learning through continued education and research.

vi) Use the concepts of best practices and standards to develop user interactive and abstract application

vii) Understand the professional, ethical, legal, security, social issues and responsibilities

General/Regular course in Computer Science

Course Structure

Details of courses under (B.Sc. with Computer Science Regular):

-	*Credits		
Course	Theory + Practical	Theory + Tutorial	
I. Core Course (6 Credits)			
(12 Papers)	12X4=48	12X5=60	
04 Courses from each of the 03 disciplines of choice			
Core Course Practical / Tutorial*			
(12 Practical/Tutorials*)	12X2=24	12X1=12	
04 Courses from each of the 03 disciplines of choice			
II. Elective Course (6 Credits)			
(6 Papers)	6X4=24	6X5=30	
Two papers from each discipline of choice including paper of interdisciplinary nature			
Elective Course Practical / Tutorial*	6 X 2=12	6X1=6	
Two papers from each discipline of choice including paper of interdisciplinary nature			
Optional Dissertation or project work in place of one I Semester	Discipline Specific Election	ve paper (6 credits) in 6th	
III. Ability Enhancement Courses			
1. Ability Enhancement Compulsory Courses (AECC) (2 Papers of 4 credit each)	2 X 4=8	2 X 4=8	
Environmental Science			
English Communication			
2. Skill Enhancement Courses (SEC) (4 Papers of 4 credit each)	4 X 4=16	4 X 4=16	
Total credit	132	132	

* wherever there is a practical there will be no tutorial and vice-versa

Program Learning Outcomes: The goals of the computer science department are to prepare students for graduate training in some specialized area of computer science, to prepare

students for jobs in industry, business or government, and to provide support courses for students in technology, mathematics and other fields requiring computing skills.

4. B.Sc. in Mathematics (CBCS)

Program Specific Outcomes

The completion of the BMATH(H) Program shall enable a student to:

i) Communicate mathematics effectively by oral, written, computational and graphic means.

ii) Create mathematical ideas from basic axioms.

iii) Gauge the hypothesis, theories, techniques and proofs provisionally.

iv)Utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.

v) Identify applications of mathematics in other disciplines and in the real world, leading to enhancement of career prospects in a plethora of fields.

vi) Appreciate the requirement of lifelong learning through continued education and research.

HE CO	JURSES				
Sem	Core Course (14)	Ability Enhancement Compulsory Course (AECC) (2)	Skill Enhancement Course (SEC) (2)	Discipline Specific Elective (DSE) (4)	Generic Elective (GE) (4) (Other than Mathematics Honours)
T	MAT-HC-1016: Calculus (including practical)	ENG-AE-1014			MAT-HG-1016 / MAT-RC-
1	MAT-HC-1026:Algebra				1016MAT-HG- 1026
п	MAT-HC-2016: Real Analysis	ENV-AE-2014			MAT-HG-2016 /MAT-RC-2016
-	MAT-HC-2026: Differential Equations (including practical)				MAT-HG-2026
	MAT-HC-3016: Theory of				MAT-HG-3016
	Real Functions		MAT-SE-3014		MAT-RC-
	MAT-HC-3026: Group	1	MAT-SE-3024		
ш	Theory-I				3016MAT-HG-
	MAT-HC-3036:				3026
	Analytical Geometry				
	MAT-HC-4016: Multivariate				MAT-HG-4016
	Calculus		MAT-SE-4014		/ MAT-RC-
IV	MAT-HC-4026: Numerical Methods (including practical)		MAT-SE-4024 MAT-SE-4034		4016MAT-HG-
	MAT-HC-4036: Ring Theory				4026
	MAT HC 5016: Complex			DSE-1	
	Analysis			MAT-HE-5026	
v				MAT-HE-5036	
				DSE-2	
	MAT-HC-5026: Linear			MAT-HE-5046	
	Algebra			MAT-HE-5066	
	MAT-HC-6016: Riemann		1	DSE-3	
	Integration and Metric spaces			MAT-HE-6016 MAT-HE-6026	
				MAT-HE-6036	
	MAT. HC 6026	1		DSF.4	1
VI	Partial Differential			MAT-HE-6056	
	Equations (including			MAT-HE-6066	
	practical)			MAT-HE-6076	
				Project In lieu of	1
				DSE-3 or DSE-4	
		1	1	1	1

CBCS Course Structure for B.Sc. (Hons.) Mathematics Program SEMESTER WISE PLACEMENT OF THE COURSES

Legends: HC: Core Papers HE: Discipline Specific Elective Papers SE: Skill

Honors papers in Mathematics:

Semester	Paper Title	Paper Code	Course Outcome
	Calculus	MAT-HC-1016	This course will enable the students to:
			i) Learn first and second derivative tests for relative extrema and apply the knowledge in problems in business, economics and life sciences.
			ii) Sketch curves in a plane using its mathematical properties in the different coordinate systems of reference.
			iii) Compute area of surfaces of revolution and the volume of solids by integrating over cross-sectional areas.
			iv) Understand the calculus of vector functions and its use to develop the basic principles of planetary motion.
Semester I			
	Algebra	MAT-HC-1026	This course will enable the students to:
			i) Employ DeMoivre's theorem in a number of applications to solve numerical problems.
			ii) Learn about equivalent classes and cardinality of a set.
			iii) Use modular arithmetic and basic properties of congruences.
			iv) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix.
			v) Learn about the solution sets of linear systems using matrix method and Cramer's rule

Semester	Paper Title	Paper Code	Course Outcome
	Real Analysis	MAT-HC-2016	 This course will enable the students to: i) Understand many properties of the real line R, including completeness and Archimedean properties. ii) Learn to define sequences in terms of functions from N to a subset of R. iii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence. Apply the ratio, root, alternating series and limit comparison tests for convergence and absolute convergence of an infinite series of real numbers.
Semester II	Differential Equations (including practical)	MAT-HC-2026	The course will enable the students to:i Learn basics of differential equations and mathematical modeling.ii Formulate differential equations for various mathematical models.iii Solve first order non-linear differential equations and linear differential equations of higher order using various techniques.iv Apply these techniques to solve and analyze various
emester- III	Theory of Real Functions	MAT-HC-3016	 This course will enable the students to: i) Have a rigorous understanding of the concept of limit of a function. ii) Learn about continuity and uniform continuity of functions defined on intervals. iii) Understand geometrical properties of continuous functions on

	closed and bounded intervals.

Semester	Paper Title	Paper Code	Course Outcome
			iv) Learn extensively about the concept of differentiability using limits, leading to a better understanding for applications.
			v) Know about applications of mean value theorems and Taylor's theorem
	Group Theory-I	MAT-HC-3026	The course will enable the students to:
			i) Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc.
			ii) Link the fundamental concepts of groups and symmetrical figures.
			iii) Analyze the subgroups of cyclic groups and classify subgroups of cyclic groups.
Semester-III			iv) Explain the significance of the notion of cosets, normal subgroups and factor groups.
			v) Learn about Lagrange's theorem and Fermat's Little theorem.
			vi) Know about group homomorphisms and group isomorphisms.
	Analytical Geometry	MAT-HC-3036	This course will enable the students to:
			i) Learn conic sections and transform co-ordinate systems
			ii) Learn polar equation of a conic, tangent, normal and properties
			iii) Have a rigorous understanding of the concept of three-dimensional coordinates systems

Semester	Paper Title	Paper Code	Course Outcome
Semester-III (Skill enhancement courses EC-1)	Computer Algebra Systems and Related Software	MAT-SE-3014	This course will enable the students to:i)Useofsoftware;Mathematica/MATLAB/Maxima/Maple, etc. as a calculator, for plotting functions and animations.ii)UseofCASforvariousapplicationsofeigenvaluesandeigenvaluesandeigenvaluesandeigenvectors.iii)UnderstandtheuseofRand learn to read and get data into R.iv)LearnLearnthe use of R in summary calculation, pictorial representation of datadataandexploringrelationship between data.v)Analyze,technical argumentsonthe basisof geometry
	Combinatorics and Graph Theory	MAT-SE-3024	This course will enable the students to: i) Learn about the counting principles, permutations and combinations, Pigeon hole principle ii) Understand the basics of graph theory and learn about social networks, Eulerian and Hamiltonian graphs, diagram tracing puzzles and Knight's tour problem
Semester-IV	Multivariate Calculus	MAT-HC-4016	 This course will enable the students to: i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. ii) Understand the maximization and minimization of multivariable functions subject to the given constraints on variables. iii) Learn about inter-relationship

	amongst the line integral, double and triple integral formulations.
	iv) Familiarize with Green's, Stokes' and Gauss divergence theorems

Semester	Paper Title	Paper Code	Course Outcome
	Numerical Methods (including practical)	MAT-HC-4026	The course will enable the students to:
			i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision.
			ii) Know about methods to solve system of linear equations, such as False position method, Fixed point iteration method, Newton's method, Secant method, LU decomposition.
			iii) Interpolation techniques to compute the values for a tabulated function at points not in the table.
Semester-IV			iv) Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions.
	Ring Theory	МАТ-НС-4036	On completion of this course, the student will be able to:
			i) Appreciate the significance of unique factorization in rings and integral domains.
			ii) Learn about the fundamental concept of rings, integral domains and fields.
			iii) Know about ring homomorphisms and isomorphisms theorems of rings.
			iv) learn about the polynomial rings over commutative rings, integral domains, Euclidean domains, and

			UFD
Semester-IV (Skill enhancement courses EC-2)	R Programming	MAT-SE-4014	This course will enable the students to: i) Be familiar with R syntax and use R as a calculator. ii) Understand the concepts of objects, vectors and data types.

Semester	Paper Title	Paper Code	Course Outcome
			iii) Know about summary commands and summary table in R .
			iv) Visualize distribution of data in R and learn about normality test.
			v) Plot various graphs and charts using R.
(Skill	LaTeX and HTML (practical)	MAT-SE-4024	After studying this course the student will be able to:
enhancement courses EC-2)			i) Create and typeset a LaTeX document.
			ii) Typeset a mathematical document using LaTex.
			iii) Learn about pictures and graphics in LaTex.
			iv) Create beamer presentations.
			v) Create web page using HTML
Semester-V	Complex Analysis (including practical)	MAT-HC-5016	The completion of the course will enable the students to: i) Learn the significance of differentiability of complex functions leading to the understanding of Cauchy–Riemann equations. ii) Learn some elementary functions and valuate the contour integrals. iii) Understand the role of Cauchy–Goursat theorem and the Cauchy integral formula. iv) Expand some simple functions as their Taylor and Laurent series, classify the nature of singularities, find residues and apply Cauchy Residue theorem to evaluate integrals.

Semester	Paper Title	Paper Code	Course Outcome
Semester-V	Linear	MAT-HC-	The course will enable the students to:
Semester-v	Algebra	MAT-HC- 5026	 i) Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space. ii) Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix. iii) Compute the characteristic polynomial, eigenvalues, eigenvectors, and eigenspaces, as well as the geometric and the algebraic multiplicities of an eigenvalue and apply the basic diagonalization result. iv) Compute inner products and determine orthogonality on vector spaces, including Gram–Schmidt orthogonalization to obtain orthonormal basis. v) Find the adjoint, normal, unitary and
			orthogonal operators.
	Number	MAT-HE-	This course will enable the students to:
Semester-V (Discipline	Theory	5016	 i) Learn about some fascinating discoveries related to the properties of prime numbers, and some of the open problems in number theory, viz., Goldbach conjecture etc. ii) Know about number theoretic functions and modular arithmetic. Solve linear, quadratic and system of linear congruence equations.
specific elective papers DSE-1)	Mechanics	MAT-HE- 5026	 The course will enable the students to: i) Know about the concepts in statics such as moments, couples, equilibrium in both two and three dimensions. ii) Understand the theory behind friction and center of gravity. iii) Know about conservation of mechanical energy and work-energy equations. iv) Learn about translational and rotational

			motion of rigid bodies.
	Probability and Statistics	MAT-HE- 5036	This course will enable the students to: i) Learn about probability density and moment generating functions. ii) Know about various univariate distributions such as Bernoulli, Binomial, Poisson, gamma and exponential distributions. iii) Learn about distributions to study the joint behavior of two random variables.
Semester	Paper Title	Paper Code	Course Outcome
			 iv) Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression. v) Understand central limit theorem, which helps to understand the remarkable fact that: the empirical frequencies of so many natural populations, exhibit a bell-shaped curve, i.e., a normal distribution
Semester-V (Discipline specific elective papers DSE-2)	Linear Programming	MAT-HE- 5046	This course will enable the students to: i) Learn about the graphical solution of linear programming problem with two variables. ii) Learn about the relation between basic feasible solutions and extreme points. iii) Understand the theory of the simplex method used to solve linear programming problems. iv) Learn about two-phase and big-M methods to deal with problems involving artificial variables. v) Learn about the relationships between the primal and dual problems. vi) Solve transportation and assignment problems. vii) Apply linear programming method to solve two-person zero-sum game problems.
	Spherical Trigonometry and Astronomy	MAT-HE- 5056	This course will enable the students to: i) Learn about the properties of spherical and polar triangles ii) Know about fundamental formulae of spherical triangles iii) Learn about the celestial sphere, circumpolar star, rate of change of zenith

		distance and azimuth iv) Learn about Kepler's law of planetary motion, Cassini's hypothesis, differential equations or fraction
Programming in C (including practical)	MAT-HE- 5066	After completion of this paper, student will be able to: i) Understand and apply the programming concepts of C which is important to mathematical investigation and problem solving.

Semester	Paper Title	Paper Code	Course Outcome
Semester-VI	Riemann Integration and Metric spaces	MAT-HC-6016	 ii) Learn about structured data-types in C and learn about applications in factorization of an integer and understanding Cartesian geometry and Pythagorean triples. iii) Use of containers and templates in various applications in algebra. iv) Use mathematical libraries for computational objectives. v) Represent the outputs of programs visually in terms of well formatted text and plots. vi) In practical students learn about the roots of a quadratic equation, solution of an equation using N-R algorithm, sin(x), cos(x) with the help of functions The course will enable the students to: i) Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration. ii) Know about improper integrals including, beta and gamma functions. iii) Learn various natural and abstract formulations leading to metric spaces. iv) Analyse how a theory advances from a particular frame to a general frame. v) Appreciate the mathematical understanding of various geometrical concepts, viz. Balls or connected sets etc. in an abstract setting. vi) Know about Banach fixed point theorem, whose far-reaching consequences have resulted into an independent branch of study in
			analysis, known as fixed point meory.

	Partial Differential Equations (including practical)	MAT-HC-6026	 vii) Learn about the two important topological properties, namely connectedness and compactness of metric spaces. The course will enable the students to: i) Formulate, classify and transform first order PDEs into canonical form. ii) Learn about method of characteristics and separation of variables to solve first order PDE's. iii) Classify and solve second order linear PDEs.
Semester	Paper Title	Paper Code	Course Outcome
			 iv) Learn about Cauchy problem for second order PDE and homogeneous and non-homogeneous wave equations. v) Apply the method of separation of variables for solving many well-known second order PDEs.
	Boolean Algebra and Automata Theory	MAT-HE-6016	The course will enable the students to: i) learn about the order isomorphism, Hasse diagrams, building new ordered set. ii) learn about the algebraic structure lattices properties of modular and distributive lattices. iii) get ideas about the Boolean algebra Switching circuits and applications o switching circuits. iv) Appreciate the theory of automata and it applications
Semester-VI Discipline specific papers (DSE-3)	Bio-Mathematics	MAT-HE-6026	Towards the end of the course the studen would be able to i) Learn the development, analysis and interpretation of bio-mathematical models. ii) Learn about the mathematics behind different bio-mathematical models iii) Solve basic application-oriented mathematical problems in real life situation Students also would be able to develop problem solving skills useful in future study
	Mathematical Modelling (including practical)	MAT-HE-6036	The course will enable the students to: i) Know about power series solution of a differential equation and learn about Legendre's and Bessel's equations. ii) Use of Laplace transform and inverse transform for solving initial value problems. iii) Learn about various models such as Monte Carlo simulation models, queuing models, and

[linear programming models
		mear programming models.
Hydromechanics	MAT-HE-6046	The course will enable the students to:
		i) Know about Pressure equation, rotating
		fluids.
		ii) learn about Fluid pressure on plane
		surfaces, resultant pressure on curved surfaces,
		Gas law, mixture of gases
		iii) learn about the Eulerian and Lagrangian
		method.
		iv) learn about equation of continuity.
		examples, acceleration of a fluid at a point

Semester	Paper Title	Paper Code	Course Outcome
	Rigid Dynamics	MAT-HE-6056	 The course will enable the students to: i) Know about find the moments and products of inertia. ii) learn about the motion of the center of inertia. iii) learn about the D'Alembert's principle and Lagrange's equations. iv) learn about motion of a body in 2-dimension.
Semester-VI (Discipline specific papers DSE-4)	Group Theory II	MAT-HE-6066	 The course shall enable students to: i) Learn about automorphisms for constructing new groups from the given group. ii) Learn about the fact that external direct product applies to data security and electric circuits. iii) Understand fundamental theorem of finite abelian groups. iv) Be familiar with group actions and conjugacy in Sn. v) Understand Sylow's theorems and their applications.
	Mathematical Finance	MAT-HE-6076	 On completion of this course, the student will be able to: i) Know the basics of financial markets and derivatives including options and futures. ii) Learn about pricing and hedging of options, as well as interest rate swaps. iii) Learn about no-arbitrage pricing concept and types of options. iv) Learn stochastic analysis (Ito formula, Ito integration) and the Black–Scholes model. v) Understand the concepts of trading

			strategies and valuation of currency swaps.
I	I		
Conorio electivo	aannaa in Math		
Semester	Papar Titla	Paper Code	Course Outcome
Semester	Calculus	MAT-HG-	The students who take this course will be able
		1016/ MAT- BC-1016	to:
		KC-1010	i) Understand continuity and differentiability in terms of limits.
			ii) Describe asymptotic behavior in terms of limits involving infinity.
			iii) Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the function.
Semester I			iv) Understand the importance of mean value theorems.
	Analytical	MAT-HG-	This course will enable the students to:
	Geometry	1026	i) Transform coordinate systems, conic sections
			ii) Learn polar equation of a conic, tangent, normal and related properties
			iii) Have a rigorous understanding of the concept of three-dimensional coordinate systems
			iv) Understand geometrical properties of dot product, cross product of vectors

Semester	Algebra	MAT-HG-	This course will enable the students to:
II		2016/ MAT-	i) Learn how to solve the cubic and
		RC-2016	biquadratic equations, also learn about symmetric functions of the roots for cubic and biquadratic
			ii) Employ De Moivre's theorem in a number of applications to solve numerical problems.
			iii) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix.Finding inverse of a matrix.
			iv) Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, ring etc.

Semester	Paper Title	Paper Code	Course Outcome
Semester	Discrete	MAT-HG-	 After the course, the student will be able to: i) Understand the notion of ordered sets and maps between ordered sets. ii) Learn about lattices, modular and distributive lattices, sub lattices and homomorphisms between lattices. iii) Become familiar with Boolean algebra, Boolean homomorphism, Karnaugh diagrams, switching circuits and their applications.
II	Mathematics	2026	
	Differential Equations	MAT-HG- 3016/MAT- RC-3016	 The course will enable the students to: i) Learn basics of differential equations and mathematical modelling. ii) Solve first order non-linear differential equations and linear differential equations of higher order using various techniques.
Semester	Linear	MAT-HG-	 This course will enable the students to: i) Learn about the graphical solution of linear programming problem with two variables. ii) Learn about the relation between basic feasible solutions and extreme points. iii) Understand the theory of the simplex method used to solve linear programming
III	Programming	3026	

problems.
iv) Learn about two-phase and big-M methods to deal with problems involving artificial variables.
v) Learn about the relationships between the primal and dual problems.
vi) Solve transportation and assignment problems.
vii) Apply linear programming method to solve two-person zero-sum game problems.

Semester	Paper Title	Paper Code	Course Outcome
Semester IV	Real Analysis Numerical Analysis	MAT-HG- 4016/ MAT- RC-4016 MAT-HG- 4026	This course will enable the students to: i) Understand many properties of the real line R, including completeness and Archimedean properties. ii) Learn to define sequences in terms of functions from R to a subset of R. iii) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence. iv) Apply the ratio, root and limit comparison tests for convergence and absolute convergence of 31 infinite series of real numbers. The course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear
			 variable and solution of a system of linear equations, up to a certain given level of precision. ii) Know about methods to solve system of linear equations, such as Gauss–Jacobi, Gauss–Seidel and SOR methods. iii) Interpolation techniques to compute the values for a tabulated function at points not in the table.

iv) Applications of numerical differentiation
and integration to convert differential
equations into difference equations for
numerical solutions.

5. B.Sc. in Physics (CBCS)

Progrmamme specific outcome

•Knowledge of mathematical methods for vector analysis, vector differentiation, integration of vectors, curvilinear co- ordinate system, Matrix, differential equations, Algebric operation etc.

- Ability to understood mechanics.
- Ability to understood waves & oscillation.
- Knowledge of ray optics wave optics and modern optics.
- Ability to understand the properties of matter: elasticity, surface tension & viscosity.
- Ability to understand electrostatic and magneto statics.
- Knowledge of classical, quantum and statistical mechanics.
- Knowledge of computer and ability to apply computer language.
- Know Understanding the edge of astrophysics and nuclear physics.
- Understanding the theory of relativity.

• Ability to understand thermodynamics and the laws of thermodynamics and their applications.

• Understand the Solid-state Physics, Crystal and its internal composition and external behaviour

- Understand electronics, Circuit construction and critical circuit analysis.
- Understand the basic instrumental skills and their usages through hand on mood.
- Ability to undertake project work.

Course structure

Туре→	Core	AECC	SEC	DSE	GE
Credits →	$14 \times 6 = 84$	2 × 4 = 8	2 × 4 = 8	4 × 6 = 24	4 × 6 = 24
	PHY-HC-1016				
Semester I	PHY-HC-1026	ENG-AE-1014			AAA-HG-1016
	PHY-HC-2016				
Semester II	PHY-HC-2026	ENV-AE-2014			BBB-HG-2016
	PHY-HC-3016				
Semester III	PHY-HC-3026		PHY-SE-3XX4		CCC-HG-3016
	PHY-HC-3036				
	PHY-HC-4016				
Semester IV	PHY-HC-4026		PHY-SE-4XX4		DDD-HG-4016
	PHY-HC-4036				
Semester V	PHY-HC-5016			PHY-HE- 5XX6	
	PHY-HC-5026			PHY-HE- 5YY6	
Somester VI	PHY-HC-6016			PHY-HE- 6XX6	
Semester VI	PHY-HC-6026			PHY-HE- 6YY6	

Course Structure for B.Sc. in Physics (Honours) under CBCS

Legends HC : Core Papers HE : Discipline Specific Elective Papers

SE : Skill Enhancement Papers HG : Generic Elective Papers

Honors papers in B.Sc. Physics

Semester	Paner Title	Paner Code	Course Outcome
Semester		Taper Coue	
	Mathematical Physics I	РНҮ-НС- 1016	Successful students should be able to understand vector and its applications in various fields, differential equations and its applications, different coordinate systems, concept of probability and error.
Semester I	Mechanics	РНҮ-НС- 1026	On successful completion of the course students should be able understand Inertial and non inertial reference frames, Newtonian motion, Galilean transformations, projectile motion, work and energy, Elastic and inelastic collisions, motion under central force, simple harmonic oscillations, special theory of relativity.
Semester II	Electricity & Magnetism	РНҮ-НС- 2016	After successful completion of this course, students will be able to Understand electric and magnetic fields in matter, Dilectric properties of matter magnetic properties of matter, electromagnetic induction, applications of Kirchhofff's law in different circuits, applications of network theorem in circuits.
	Waves & Optics	РНҮ-НС- 2026	After successful completion of this course, students will be able to Understand superposition of harmonic oscillations, different types of wave motions, superposition of harmonic waves, interference and interferometer, diffraction, holography.
	Mathematical Physics II	РНҮ-НС- 3016	After successful completion of the course, students will be able to solve differential equation using power series solution method, solve differential equation using separation of variables method, special integrals, different properties of matrix, Fourier series.
	Thermal Physics	РНҮ-НС- 3026	Upon successful completion, students will have the knowledge and skills to identify and describe the statistical nature of concepts and laws in thermodynamics, in particular: entropy, temperature, Thermodynamics potentials, Free energies, Maxwell's relations in thermodynamics, behaviour of real gases.

a		D ~ J	
Semester	Paper Title	Paper Code	Course Outcome
Semester- III	Digital Systems & Applications	РНҮ-НС- 3036	After successful completion of the course student will be able to understand the working principle of CRO, develop a digital logic and apply it to solve real life problems, Analyze, design and implement combinational logic circuits, classify different semiconductor memories, Analyze, design and implement sequential logic circuits, analyze digital system design using PLD, Simulate and implement combinational and sequential circuits.
	Physics Workshop Skills	PHY-SE- 3014	The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode.
Semester III	COMPUTATI ONAL PHYSICS SKILLS	PHY-SE- 3024	The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics. Highlights the use of computational methods to solve physical problems. Use of computer language as a tool in solving physics problems (applications). Course will consist of hands on training on the Problem solving on Computers.
(Skill Enhancement Papers)	Computer Assembling and Networking	PHY-SE- 3034	After successfully completing the course students will be able to Identify Computer Hardware Components, Network Components and Peripherals, assemble and dissemble a computer, Identify the different types of network topologies and protocols. Enumerate the layers of the OSI model and TCP/IP. Explain the function(s) of each layer, Identify the different types of network devices and their functions within a network, Understand and building the skills of subnetting and routing mechanisms., Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation.

Semester	Paner Title	Paper Code	Course Outcome
Semester-(Skill Enhancement Papers)III	Digital Photography & Editing	PHY-SE- 3044	On successful completion of the course students will be able to indentify cameras according to formats and view finder systems, identify types of lenses and state what type of lenses to be used for different purposes, apply settings of shutter speed, control depth of field via aperture settings, apply suitable focal length, Use the light metering mechanism of the camera to take photographs.
	VIDEO EDITING FOR SOCIAL MEDIA	PHY-SE- 3054	On successful completion of the course students will be able to learn to Edit impactful video content which appeals to target audience, Add or Edit Music, Soundtrack or Audio to your videos, Learn to customize your videos by using Text (fonts), Learn to use transitions and effects to create impactful videos.
	WEATHER FORECASTING	PHY-SE- 3064	The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques.
	APPLIED OPTICS	PHY-SE- 3074	Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.
	TECHNICAL DRAWING	PHY-SE- 3084	After successfully completing the course students will be able to draw free hand sketches of various kinds of objects, apply different dimensioning methods on drawing of objects, different types of scales and their utilization in reading and reproducing drawings of objects and maps, Draw 2 - dimensional view of different objects viewed from different angles, Generate isometric (3D) drawing from different 2D (orthographic) views/sketches, use basic commands of Auto CAD.
	PAGEMAKER	PHY-SE- 3094	On successful completion of the course students will be able to Create Documents and Templates, add text into documents using various methods, and apply different formatting styles to characters and paragraphs, Import graphics, create objects using various tools, add effects to objects,

		1	
			Create a book and export it into PDF, Multipage Layout Design.
Semester	Paper Title	Paper Code	Course Outcome
Semester IV	Digital Photography & Editing	РНҮ-НС- 4016	On successful completion of the course students will able to solve complex integrals using residue theorem, apply Fourier and Laplace transforms in solving differential equations, understand properties of Tensor like Transformation of coordinates, contravariant and co-variant tensors, indices rules for combining tensors.
	Elements of Modern Physics	РНҮ-НС- 4026	On completion of the course students will be able to understand modern development in Physics, Starting from Planck's law, it development of the idea of probability interpretation and the formulation of Schrodinger equation. Students will also get preliminary idea of structure of nucleus, radioactivity Fission and Fusion and Laser
	Analog Systems & Applications	РНҮ-НС- 4036	On successful completion of the course students will be able to understand about the physics of semiconductor p-n junction and devices such as rectifier diodes, zener diode, photodiode etc. and bipolar junction transistors, transistor biasing and stabilization circuits, the concept of feedback in amplifiers and the oscillator circuits, students will also have an understanding of operational amplifiers and their applications.
Semester IV	BASIC INSTRUMENT ATION SKILLS	PHY-SE- 4014	This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.
(Skill Enhancement Papers)	Research & Technical Writing	PHY-SE- 4024	On successful completion of the course students will be able to identify and write different parts of technical reports, write article, thesis, and presentation in latex, create chart in Microsoft excel, use different format of chart based on need, plot data from different sources using Origin plot.

Semester	Paper Title	Paper Code	Course Outcome
	Domestic and Industrial Electrical Wiring	PHY-SE- 4034	After successfully completion of the course students will be able to recognize various electrical devices and their symbols, Recognize various electrical devices placed on the panels/distribution boards and to design the panels, Read schematic and wiring diagrams of electrical devices, Read and interpret electrical installation plan, Practice and execute any type of wiring, Estimate and determine the cost of wiring installation
	Photoshop	PHY-SE- 4044	On successful completion of the course students will be able to work with the tools in Adobe Photoshop CC, crop image in Adobe Photoshop CC, to resize an image for print and digital media in Adobe Photoshop CC, apply Photoshop filters in print and digital media, apply filters to sharpen the images, different types of brushes used for digital painting.
(Skill Enhancement Papers)	MOTION GRAPHICS FOR ADVERTISING & FILMS	PHY-SE- 4054	On successful completion of the course students will be able to create Motion Graphic Design for Ads, Commercials, Promos & Film / Show Titles, use After Effects templates to create your own customized 2D or 3D Motion Graphics, Understand Working with Layers, create Shape morphing animation and build transitions, utilize After Effects' Motion Graphics Techniques.
	Radiation Safety	PHY-SE- 4064	The students will acquire a basic knowledge of types and sources of radiations, interactions of radiations with matter, risks involved and safety measures to be taken.
	RENEWABLE ENERGY AND ENERGY HARVESTING	PHY-SE- 4074	The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible
	Introduction to CorelDraw	PHY-SE- 4084	On successful completion of the course students will be able to work with layers and symbols in CorelDRAW, Apply fills and outlines to illustrations in CorelDRAW, Use, edit, and create artistic and paragraph text in

		CorelDRAW, Create boundaries to objects
		and copy and clone the effect of one object to
		another in Core IDRAW.

Semester	Paper Title	Paper Code	Course Outcome
Semester IV (Skill Enhancement Papers	GRAPHIC DESIGN FOR DIGITAL ADVERTISING	PHY-SE- 4094	On successful completion of the course students will be able to Understand aesthetics & visual appeal in design, Using impactful visual content which appeals to target audience, Conceptualize, Visualize and Create Graphic Designs for:Digital Ads, Posters, Banners and Flyers, Social Media Ads & Banners, Websites and Blogs
Semester V	Quantum Mechanics & Applications	РНҮ-НС- 5016	On successful completion of the course students will be able to understand the principles in quantum mechanics, such as the Schrödinger equation, the wave function, the uncertainty principle, stationary and non- stationary states, time evolution of solutions, as well as the relation between quantum mechanics and linear algebra. Students will be able to solve the Schrödinger equation for hydrogen atom. Students will have the concepts of angular momentum and spin, as well as the rules for quantization and addition of these, spin-orbit coupling and Zeeman Effect.
	Solid State Physics	РНҮ-НС- 5026	On successful completion of the course students should be able to explain the main features of crystal lattices and phonons, understand the elementary lattice dynamics and its influence on the properties of materials, describe the main features of the physics of electrons in solids; explain the dielectric ferroelectric and magnetic properties of solids and understand the basic concept in superconductivity.
Semester V Discipline Specific Elective Papers	Experimental Techniques	РНҮ-НЕ- 5016	Upon completion of this course, students will be able to describe the errors in measurement and statistical analysis of data required while performing an experiment. Also, students will learn the working principle, efficiency and applications of transducers & industrial instruments like digital multimeter, RTD, Thermistor, Thermocouples and Semiconductor type temperature sensors.

Semester	Paper Title	Paper Code	Course Outcome
	Embedded System: Introduction to microcontroller	РНҮ-НЕ- 5026	Upon completion of this course, students will be able to understand microprocessor and microcontroller 8051. Students will also learn about the 8051 I/O port programming, various addressing modes, Timer and counter programming, Serial port programming with and without interrupt and interfacing 8051 microcontroller to peripherals.
	Advanced Mathematical Physics I	РНҮ-НЕ- 5036	Upon completion of this course, students will be able to solve problems in Physics related to Linear Vector space, Matrix algebra, Tensor.
Semester V Discipline Specific Elective Papers	Physics of Devices and Instruments	РНҮ-НЕ- 5046	Upon completion of this course, students will be able to gain knowledge on advanced electronics devices such as UJT, JFET, MOSFET, CMOS etc., detailed process of IC fabrication, Digital Data serial and parallel Communication Standards along with the understanding of communication systems.
	Nuclear and Particle Physics	РНҮ-НЕ- 5056	Upon completion of this course, students will have the understanding of the sub atomic particles and their properties. They will gain knowledge about the different nuclear techniques and their applications in different branches of Physics and societal application. The course will develop problem based skills and the acquire knowledge can be applied in the areas of nuclear, medical, archeology, geology and other interdisciplinaryfields of Physics and Chemistry.
Semester VI	Electromagnetic Theory	РНҮ-НС- 6016	On successful completion of the course students will acquire the concepts of Maxwell's equations, propagation of electromagnetic (EM) waves in different homogeneous-isotropic as well as anisotropic unbounded and bounded media, production and detection of different types of polarized EM waves, general information as waveguides and fibre optics.

Semester	Paper Title	Paper Code	Course Outcome
Semester VI	Statistical Mechanics	PHY-HC- 6026	On successful completion of the course students will be learn the techniques of Statistical Mechanics to apply in various fields including Astrophysics, Semiconductors, Plasma Physics, Bio- Physics, Chemistry and in many other directions
	Communication Electronics	PHY-HE- 6016	Upon completion of this course, students will have the concepts of electronics in communication, details of communication techniques based on Analog Modulation, Analog and digital Pulse Modulation including PAM, PWM, PPM, ASK, PSK, FSK, overview of communication and Navigation systems such as GPS and mobile telephony system.
Semester VI Discipline Specific Elective	Digital Signal Processing	РНҮ-НЕ- 6026	Upon completion of this course, students will be able This paper describes the discrete-time signals and systems, Fourier Transform Representation of Aperiodic Discrete-Time Signals. This paper also highlights the concept of filters and realization of Digital Filters. At the end of the syllabus, students will develop the understanding of Discrete and fast Fourier Transform.
Papers	Advanced Mathematical Physics II	РНҮ-НЕ- 6036	Upon completion of this course, students will be able to apply the concepts of Calculus of Variations, Group Theory and Probability Theory to solve numerical problems in Physics.
	Astronomy and Astrophysics	PHY-HE- 6046	Upon completion of this course, students will be able to understanding the origin and evolution of the Universe. The course will give a comprehensive introduction on the measurement of basic astronomical parameters such as astronomical scales, luminosity and astronomical quantities. It will give an overview on key developments in observational astrophysics. Students will have the idea of the instruments implemented for astronomical observation, the formation of planetary system and its evolution with time,

th physical properties of Sun and the components of the solar system; and stellar and interstellar components of our Milky Way galaxy. Students will have the understanding of the origin and evolution of galaxies, presence of dark matter and large scale structures of the Universe.

Semester	Paper Title	Paper Code	Course Outcome
Semester VI	PHYSICS-DSE:	PHY-HE-	Upon completion of this course, students will
	CLASSICAL	6056	have the overview of Newton's Laws of
Discipline	DYNAMICS		Motion, Special Theory of Relativity by 4-
Specific Elective			vectoer approach and fluids. Students will
Papers			also have the understanding of the Lagrangian
			and Hamiltonian of a system. By the end of
			this course, students will be able to solve the
			seen or unseen problems/numericals in
			classical mechanics.

Generic papers in B.Sc. Physics

Semester	Paper Title	Paper Code	Course Outcome
Semester-I	Mechanics	РНҮ-Н G- 1016 РНҮ-RC- 1016	Upon completion of this course, students are expected to understand the role of vectors and coordinate systems in Physics, solve Ordinary Differential Equations, laws of motion and their application to various dynamical situations, Inertial reference frames their transformations, concept of conservation of energy, momentum, angular momentum and apply them to basic problems, phenomenon of simple harmonic motion, motion under central force, concept of time dilation, Length contraction using special teory of relativity. In the laboratory course, after acquiring knowledge of how to handle measuring instruments (like screw gauge, Vernier calipers, travelling microscope) student shall embark on verifying various principles and associated measurable parameters.
	Electricity & Magnetism	PHY-HG- 2016 PHY-RC- 2016	Upon completion of this course, students are expected to apply Gauss's law of electrostatics to solve a variety of problems, calculate the magnetic forces that act on moving charges and the magnetic fields due to currents, have brief idea of magnetic

materials, understand the concepts of induction, and apply them to solve variety of problems. In the Lab course, students will be able to measure resistance (high and low), Voltage, Current, self and mutual inductance, capacitor, strength of magnetic field and its variation, study different circuits RC, LCR
variation, study different circuits RC, LCR etc.

Semester	Paper Title	Paper Code	Course Outcome
Semester III	Thermal Physics & Statistical Mechanics	PHY-HG- 3016 (PHY-RC- 3016)	Upon completion of this course, students are expected learn the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations, Maxwell's thermodynamic relations, fundamentals of the kinetic theory of gases, Maxwell-Boltzman distribution law, equipartition of energies, mean free path of molecular collisions, viscosity, thermal conductivity, diffusion and Brownian motion, black body radiations, Stefan- Boltzmann's law, Rayleigh-Jean's law and Planck's law and their significances, quantum statistical distributions, viz., the Bose-Einstein statistics and the Fermi-Dirac statistics. In the laboratory course, the students will be able to Measure of Planck's constant using black body radiation, determine Stefan's Constant, coefficient of thermal conductivity of a bad conductor and a good conductor, determine the temperature coefficient of resistance, study variation of thermo emf across two junctions of a thermocouple with temperature etc.
Semester IV	Waves & Optics	PHY-HG- 4016 (PHY-RC- 4016)	Upon completion of this course, students are expected to understand Simple harmonic oscillation and superposition principle, importance of classical wave equation in transverse and longitudinal waves and solving a range of physical systems on its basis, concept of normal modes in transverse and longitudinal waves: their frequencies and configurations, interference as superposition of waves from coherent sources derived from same parent source, Demonstrate

	understanding of Interference and diffraction experiments, Polarization. In the laboratory course, student will gain hands-on experience
	of using various optical instruments and making finer measurements of wavelength of light using Newton Rings experiment, Fresnel
	Biprism etc. Resolving power of optical equipment, the motion of coupled oscillators, study of Lissajous figures and behaviour of transverse, longitudinal waves
	auns ferbe, fongitualitat waves.

6. B. Sc. In Zoology (CBCS)

Programme specific outcome

- Broad understanding of animal diversity, including knowledge of the scientific classification; evolutionary relationships among the animals and the adaptations they show.
- Understanding of ecology and relationship between biological, chemical and physical factors of the environment; the need of wildlife conservation and management.
- Understanding of how organisms function at the level of the gene, genome, cell, tissue, organ and organ-system. Drawing upon this knowledge, they are able to study the histology and comprehend the comparative anatomy of the organisms.
- Understanding of the development, growth, reproduction, various structural and physiological adaptations as well as behaviour of different forms of animal life.
- Understanding the relationships between structure and functions at different levels of biological organization (e.g., molecules, cells, organs, organisms, populations, and species) in animals and their coordinated function (Physiological, Biochemical, Endocrine and Immune system).
- Understanding the Biological Techniques, Bioinformatics and the application of statistics in Biological science.
- Understanding of the applied biological sciences or economic Zoology such as sericulture, apiculture, aquaculture, lac culture, pest and its management for their career opportunities.
- Make able to think logically from the knowledge gathered undertaking research project, assimilate and analysis of the data and ideas and concluding in the form of project report.

Course structure:

Course Structure	
Course	*Credits
	Theory+ Practical
I. Core Course	14×4= 56
(14 Papers)	
Core Course Practical / Tutorial*	14×2=28
(14 Papers)	
II. Elective	4×4=16
Course (8 Papers)	
A.1. Discipline Specific Elective (4Papers)	
A.2. Discipline Specific	
Elective	
Practical/Tutorial*(4Papers)	
	4×2=8
B.1. Generic Elective/	4×4=16
Interdisciplinary	
(4 Papers)	
B.2. Generic Elective	
Practical/ Tutorial*	4×2=8
(4 Papers)	
III. Ability Enhancement Courses	2×4=8
1. Ability Enhancement	
Compulsory (2 Papers of 2 credit	
each) Environmental Studies	
English/MIL Communication	
2. Ability Enhancement	
Elective(SkillBased) (Minimum2)	2×4-9
(2 Papers of 2 credit each)	2×4=8
Total	148

*Core and DSE courses without practicals will have tutorial and have credit distribution of: 5credits for theory and 1credit for tutorial, total6credits,sameasthe papers with practical

Semester	Paper Title	Paper Code	Course Outcome
	Non-Cordates -1:	ZOO-HC-	Students are able to understand about t
	Protists to	1016	characters and classify-cation and life cycle
	Pseudocoelomates		various Protista, Porifera, Cnideria, Ctinopho
Semester			Platyhel-minthes and Nemathhelminthes
Ι	Principle of	ZOO-HC-	Students are able to understand about the ba
	Ecology	1026	principle with special reference to populat
			community and ecosystem. At the same time
			applied ecological part student will aware with
		700 110	process of wild life conservation and managemen
	Non Chordates II:	200-нс-	Students are able to understand about
	Coelomates	2016	characters and classification, social life a
			evolutionary significance Coelomates.
0	Call Dialagra	700 ЦС	Students are able to understand about
Semester	Cell blology	200-60-	structure and function of call and cally
11		2020	structure and function of cell division and
			organeties, process of cell division and a
			about the preparation of various stains
			fixatives determination of protection
			mucopolysaccharides and chromosome
			practicals
	Diversity of	ZOO-HC-	Students are able to understand about
	Chordata	3016	general characteristics, classificati
			metamorphosis and animal distribution.
	Animal Physiology:	ZOO-HC-	Students are able to understand the en
	Controlling and	3026	animal's functions of the body which inclu
	Coordinating		nutrition., Respiration, heart, excretion, ne
	Systems		physiology etc
Semester	Fundamentals of	ZOO-HC-	Students are able to understand all
III	Biochemistry	3036	biochemical components of the body syst
	·		are studied. It helps the student to get a vi
			about the chemical compositions of differ
			chemical compounds such as enzym
			hormones and other secretions. It also inclu
			the pathway and chemical which
			responsible for the energy production in
			body
Semester	Comparative	ZOO-HC-	Students are able to understand about
IV	Anatomy of	4016	comparative structures of heart, aoticarch
	Vertebrates		kidney, balancing organ, hearing org
			thyroid, respiratory organs, brain of differ

			animals which give them a definite idea r only the structure but also the structur development of that organ and how th become modified according to the need a environment.
Semester	Paper Title	Paper Code	Course Outcome
Semester	Animal Physiology: Life Sustaining Systems	ZOO-НС- 4026	The entire animal's functions of the body a studied in this part. It includes nutritie Respiration, heart, excretion, nerve physiolo etc in which all structure, function, process a control.
IV	Animal Physiology: Biochemistry of Metabolic Processes	ZOO-HC- 4036	Students are able to under-stand metabor process including carbo-hydrates, lipid a protein and also ATP production.
Semester	Molecular Biology	ZOO-HC- 5016	Students are able to under-stand in details about the nucleic acid, DNA replication, Protesynthesis and its modification and generalized acid.
V	Principles of Genetics	ZOO-HC- 5026	Students are able to understand about Mandelianinheritance, inter action of gen mutation and its effects.
G (Developmental Biology	ZOO-HC- 6016	Students are able to acquire a thorou knowledge of embryonic development alc with the factors affecting it.
Semester VI	Evolutionary Biology	ZOO-HC- 6026	Students will be able to learn the process Evolution, Lamarckism, Darwinism and Han Weinberg Law. They will learn the concept Phylogenetic tree, micro evolutionary proce and fossil record.
iscipline specific	c elective (DSE) course of B	S.Sc. in Zoolog	y
Semester	Paper Title	Paper Code	Course Outcome
Semester V	Computational Biology and biostatistics	ZOO-HE- 5016	Biological techniques deal with different techniques used for studying biology biostatistical tools used for analyzing biologicata.
	Animal biotechnology	ZOO-HE-	Endrocrinology teaches about hormone and t

y ZOO-HE-	Different sophisticated biological techniques for
5036	modern techniques, use of computer for
	studying animal diversity.
ZOO-HE-	Disease related parasites, their life cycle ,
5046	causative organisms are studied in parasitology
	and hence can be explored to find means of
	combating it
ta ZOO-HE-	Insecta includes a huge group of insects that can
6014	be used as biopesticides, for food, for
	medicines, for maintaining food chain etc.
	knowledge about them can illicit research in
	this field.
les ZOO-HE-	Fish and fisheries gives knowledge about the
6026	wide scope in fish rearing, cultivation and
700 Ш	marketing.
ZOO-HE-	Concepts of reproductive biology can help
0030	students to pursue their career as embryologist
4	and in conservation prospects.
uon ZOO-HE-	Adequate knowledge of wildlife management
III 0040	win help in controlling man animal conflicts
	and populsing and other activities that dismunt
	and poaching and other activities that disrupt
700 HE	and poaching and other activities that disrupt the ecology.
ZOO-HE- 6056	and poaching and other activities that disrupt the ecology. This paper will enable the students to get an idea about the research methodology and
	x ZOO-HE- 5036 ZOO-HE- 5046 ZOO-HE- 6014 es ZOO-HE- 6026 ZOO-HE- 6036 tion ZOO-HE- 6046

Skill enhancement courses of B.Sc. in Zoology

Semester	Paper Title	Paper	Course Outcome
		Code	
	Ornamental fish and	ZOO-SE-	Make students familiar with the ornamental fish
	fisheries	3014	diversity of NE India. Detail knowledge on
Semester			construction and management of Home
III			Aquarium. Brief idea on feed formulation of
			Ornamental fishes. Practical knowledge on
			Aquarium maintenance. Comprehensive
			knowledge planktons and their culture.
	Apiculture	ZOO-SE-	Make students familiar with the economic
		3024	benefits of Apiculture. Understand the biology
Semester			of bees. To develop ideas on bee rearing.
III			Practical knowledge on modern methods of
			Apiculture. Identification of bee diseases and
			enemies and their control methods.
Semester	Non Mulberry	ZOO-SE-	Students will be able to gain knowledge on the
IV	sericulture.	4014	life history and rearing of non-mulberry silk
			worms. To develop basic ideas on food of silk

Semester	Paper Title	Paper Code	Course Outcome
			worms, diseases and their control. To become acquainted with the food plants of no mulberry silk worms. Knowledge employment generation and potential sericulture.
Semester IV	Wild life photography and ecotourism	ZOO-SE- 4024	To develop expertise in Wildlife photograph Learn about about methods of documentation To develop ideas of Eco tourism. Knowled on scope of Eco tourism in NE region of India
c. Generic/Reg	gular course in Zoology		
Semester	Paper Title	Paper Code	Course Outcome
Semester I	Animal diversity	ZOO-RC- 1016	The students will have a knowledge various classes of animals ranging fro Protista to Mammalia. Basis of classificati of Animals. Rules for identification animals of various classes. Speci characters of various classes of anima Functional and physiological aspects specific animal groups. Evolutiona relationship among successive groups animals.
Semester II	Comparative anatomy and developmental biology of vertebrates	ZOO-RC- 2016	Successive stages of modification of speci- organs and organ systems in groups vertebrates i.e. Succession of organs various groups of vertebrates. Idea abo early embryonic development in frog, b and mammals. A brief idea on implantati in mammals. Generate idea metamorphosis. Develop idea about genetic control development.
Semester III	Physiology and biochemistry	ZOO-RC- 3016	Develop idea about the functioning various systems of animals like nerver system, muscles, digestive, respirato excretory, cardiovalsular, reproductive a endorcrine system. Learn about metaboli of Carbohydrate, Lipid and Prote
	action, enzyme gain a practica various tissues able to identify	e kinetics and regulation. To l idea about the structures of and endocrine glands and be them.	
--	--	---	

Semester	Paper Title	Paper Code	Course Outcome
Semester IV	Genetics and evolutionary biology	ZOO-RC- 4016	To develop ideas about genetics and its different aspects. To develop basic ideas about the causes of evolution. To develop knowledge on genetic mechanism related to evolutionary changes. To develop the concept of species and role of extinction in evolution. To undetstand the various evidences of evolution with the help of models/ pictures and diagrams.

7. Ability Enhancement Compulsory Course

(All Undergraduate Degree Programmes under Gauhati University)

I. ENG-AE-1014 English Communication (English Language Proficiency)

Course Description

This course on English for undergraduate students aims to develop the language skills of students who need to use English for academic and other purposes. The sustained content in this course is based on Reading and Writing pedagogy, and uses authentic materials to teach students. The accessible short texts used will help the students develop their speaking, reading, writing, vocabulary and grammar skills.

Course Outcomes

After studying / completing the course the students will be able to comprehend a text meaningfully by:

- making predictions about a text
- relating to their life experiences to the topic of the text
- identifying the key terms in a text
- guessing meaning of the text in particular contexts
- reading for overall idea of the text and for specific information

- knowing the context of the text
- comprehending a text meaningfully

II. ENV-AE -2014: Environmental Studies

- After studying this course students will get an introduction about the environment and its components.
- They will get a detailed idea about different types of ecosystems and its interaction.
- They will know about the importance of natural resources, biodiversity and their conservation.
- Students will be aware of the impact of human on environment, different acts and policies related to environment protection.
- They will be able to practically know about the importance of flora and fauna of land, wetlands etc. by visiting and studying any nearby places.

Principal

Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga

Orientation Programme Session: 2020-2021 Date : 25/09/2020

Venue: Smart class room II

REPORT

The Student Orientation Program for the new BSc First Semester students took place at St art Classroom II. The program began with a welcome note by Principal, PDUAM Amjonga, and expressing enthusiasm for the students' journey. IQAC Coordinator Dr. Kshirod Sarmah addressed the participants, providing insights into the course structure and its importance. Dr. Prasanta Gogoi hosted the event, emphasizing the significance of the BSc program. Chandrama Sarkar assisted throughout the program. The orientation successfully acquainted students with the course, inspiring them for a rewar ing academic experience.

NOTICE

OFFICE OF THE VICE-PRINCIPAL PANDIT DEENDAYAL UPADHYAYA ADARSHA MAHAVIDYALAYA AMJONGA: 783124 :: DIST.: GOALPARA :: ASSAM :: INDIA Website: www.pduamanijonga.ac.in :::::: Email: acadpduam@gmail.com Date: 24-09-2020 NOTICE This is to notify to all the students of BSc 1st semester that an orientation program regarding the course outcome and program outcome will be held on 25/09/2020 for the newly admitted students. All are requested to be present in the program without fail. Wearing of face mask and maintaining social distance are compulsory. Venue of the meeting: Smart Classroom-2 Time: 11.00 AM Onwards ce-Principal, Vice PDUAM, Amjonga Vice Principal Pandil Deer cayal Uptimit days saarsh Mahavus akuya, Amjo GLawara

Orientation Programme Session: 2021-2022 Date: 04/10/2021 Venue: Smart class room II

REPORT

The Student Orientation Program for the new BSc First Semester students was conducted at Sma classroom II. Dr. Rupam Kalita, Assistant IQAC Coordinator, delivered a welcome note, acquaintin the participants with the course structure and academic expectations. Vice Principal Hari Gautar hosted the event, emphasizing the importance of the BSc course. Kshirod Sarmah provided assistanc throughout the program. The orientation successfully familiarized students with the course an provided them with a strong foundation for their academic journey.

Principal Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga

OFFICE OF THE VICE-PRINCIPAL PANDIT DEENDAYAL UPADHYAYA ADARSHA MAHAVIDYALAYA AMJONGA: 783124 :: DIST.: GOALPARA :: ASSAM :: INDIA Website: www.pduamanijonga.ac.in :::::: Email: acadpduam@gmail.com

Date: 02-10-2021

NOTICE

This is to notify to all the students of BSc 1st semester that an orientation program regarding the course outcome and program outcome will be held on 04/10/2021 for the newly admitted students. All the students have to be present in the program without fail. All are requested to wear the face mask and maintain social distance.

Venue of the meeting: Smart Classroom-2

Time: 11.00 AM Onwards

Vice-Principal,

PDUAM, Amjonga Vice Principal Pandii Dee-dayal Ubauhyara Adarsha Manavidyalaya, Amjonga, Goalpara

Principal

Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga

Orientation Programme Session: 2022-2023 Date: 16/08/2022 Venue: Smart class room II

REPORT

The Student Orientation Program for the new BSc First Semester students was held at Smart Classroon 2. IQAC Coordinator Dr. Sudipta Phukan welcomed the participants and emphasized the importance of the program. Dr. Prasanta Gogoi hosted the event, highlighting the significance of the BSc course and its career opportunities. The course awareness session, conducted by Dr. Gogoi and Chandrama Sar car, provided an overview of the curriculum, learning outcomes, and institutional resources. An interactive session allowed students to seek clarifications. The program successfully acquainted students with the course and left them motivated for their academic journey.

OFFICE OF THE VICE-PRINCIPAL PANDIT DEENDAYAL UPADHYAYA ADARSHA MAHAVIDYALAYA AMJORGA: 783124 :: DIST: GOALPARA :: ASSAM :: INDIA Website: www.pduamamjonga.ac.in :::::: Email: acadpduam@gmail.com

Date: 13-08-2022

NOTICE

This is to notify to all the students of BSc 1st semester that an orientation program regarding the course outcome and program outcome will be held on 16/08/2022 for the newly admitted studen = present in the p

2

are encouraged to follo

Venue of the me Time: 11.00 AM

Coordinator Coordinator DUAM, Anionga DUAM, 18312A

Principal

Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga

R Vice-Principal,

PDUAM, Amjonga Vice Principal Pandit User rayal Uppdhyser: warsha Mahavudyatnya, Amjonga, Goalpara

Orientation Programme Session: 2023-2024

Date: 23/06/2023

Venue: Smart class room I

REPORT

The orientation program for new BSc students in the four-year undergraduate program under NEP-1020 was conducted at Smart Classroom 1. The meeting aimed to acquaint students with the course and provide essential information about their academic journey. Dr. Chandrama Sarkar delivered a welcome spech, highlighting the institution's commitment to supporting students throughout their studies. Hari P asad Goutam discussed the NEP course, explaining its key principles and objectives. Dr. Shahidul Islam han engaged in an interactive session, addressing students' concerns and facilitating a better understanding of NEP-2020. Dr. Rupam Kalita provided insights into course credits, emphasizing their significanc for academic progression. Dr. Prasanta Gogoi assisted in creating email IDs for new students, enal ling effective communication. Dr. Chandrama Sarkar delivered a vote of thanks, expressing gratitude o all participants. The program successfully introduced students to the course and instilled a sense of motivition and belonging.

UD

NOTICE

OFFICE OF THE VICE-PRINCIPAL PANDIT DEENDAYAL UPADHYAYA ADARSHA MAHAVIDYALAYA AMJONGA: 783124 :: DIST.: GOALPARA :: ASSAM :: INDIA Website: www.pduamamjonga.ac.in :::::: Email: acadpduam@gmail.com Date: 22-06-2023 NOTICE This is to notify to all the students of BSc $1^{\,\mbox{st}}$ semester that an orientation program regarding the course outcome and program outcome will be held on 23/06/2023 for the newly admitted students. All are requested to be present in the program without fail. Venue of the meeting: Smart Classroom-2 Time: 11.00 AM Onwards Vice-Principal, PDUAM, Amjonga Vice Principal Vice Principei Pandit Dee Aayai Upadhyata kaarsha Mahavidyakiya, Amjohea, Goalpara

Report of Student Feedback on Course Curriculum

Student feedback is taken by the college on course content and syllabus for getting an idea about heir understanding and apprehension on the components of the curriculum. For this assessment the parameters that are kept in view include: 1. necessity of the curriculum, appropriacy of the units provided, 2. where the course outcomes are clear or not, 3. size of the syllabus, 4. usefulness of the syllabus, 5. whethere the syllabus is up to date or not, 6. scope of growth of the students by studying the syllabus, 7. adequate reference books can be found or not, 8. credits are properly allocated to the units or not, 9. whethere the the syllabus is sufficient or not and 10. methods adopted by the teachers to complete the syllabus.

1. Feedback on the course content for the assessment year 2020-2021

Principal Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga

2. Feedback on the course content for the assessment year 2021-2022

3. Feedback on the course content for the assessment year 2022-2023

2.6. Student Performance and Learning Outcome

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all programmes offered by the institute are stated and displayed on website and attainment of POs and COs are evaluated

Response:

• PDUAM, Amjonga, follows the course and curriculum defined by Gauhati University. For the benefit of teachers and students, the program and course outcomes are clearly discussed in order for students to have a complete understanding of the implications of the course they are enrolled in. For this purpose, one day **Orientation Programme** is arranged by the institute for the first semester students before commencement of classes.

- The institute aims to make each student a well-rounded person capable of making wise judgements in all areas of life. Making students prepared for a successful career by providing good education is the main motto of this institute.
- The different course and curriculum under CBCS syllabus need more clarity as it opens a door to the interdisciplinary and multidisciplinary learning at the degree level. At present, the institute offers B.Sc. programme with 6 different honors courses including Botany, Chemistry, Computer Science, Mathematics, Physics and Zoology. The teachers of this institute try to explain the necessity, integrity, scope and outcomes of this syllabus to the students so that they can take good decisions in choosing subject areas for their higher education.
- Feedbacks from the students are also taken by the institute to interpret their knowledge and consciousness on the course. The teachers also encourage students to appear in different national level as well as state level examinations related to their subjects concerned to get admission into higher studies.
- The evaluation of course outcome is measured by observing and analyzing the results of **sessional examinations** as well **final examinations**. Students are given **home assignments** to look over their ability of learning ability execution. The teachers prepare lesson plans based on the syllabus which help them to teach more effectively and thus increase the chance of attainment of more course outcomes.
- Field trips, laboratory and institute visits are arranged regularly for making the students aware of their opportunities and application of their curricular programmes. The reports of these trips and visits submitted by the students are analyzed to see their observation power, writing and creativity skills, as a means of evaluation of course outcomes.

The numbers of students gone for higher education as well as for services in different government and private sectors are tracked regularly to monitor the attainment of program outcomes.